Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 140(16): 1816-1821, 2022 10 20.
Article in English | MEDLINE | ID: mdl-35853156

ABSTRACT

The acquisition of a multidrug refractory state is a major cause of mortality in myeloma. Myeloma drugs that target the cereblon (CRBN) protein include widely used immunomodulatory drugs (IMiDs), and newer CRBN E3 ligase modulator drugs (CELMoDs), in clinical trials. CRBN genetic disruption causes resistance and poor outcomes with IMiDs. Here, we investigate alternative genomic associations of IMiD resistance, using large whole-genome sequencing patient datasets (n = 522 cases) at newly diagnosed, lenalidomide (LEN)-refractory and lenalidomide-then-pomalidomide (LEN-then-POM)-refractory timepoints. Selecting gene targets reproducibly identified by published CRISPR/shRNA IMiD resistance screens, we found little evidence of genetic disruption by mutation associated with IMiD resistance. However, we identified a chromosome region, 2q37, containing COP9 signalosome members COPS7B and COPS8, copy loss of which significantly enriches between newly diagnosed (incidence 5.5%), LEN-refractory (10.0%), and LEN-then-POM-refractory states (16.4%), and may adversely affect outcomes when clonal fraction is high. In a separate dataset (50 patients) with sequential samples taken throughout treatment, we identified acquisition of 2q37 loss in 16% cases with IMiD exposure, but none in cases without IMiD exposure. The COP9 signalosome is essential for maintenance of the CUL4-DDB1-CRBN E3 ubiquitin ligase. This region may represent a novel marker of IMiD resistance with clinical utility.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Lenalidomide/therapeutic use , RNA, Small Interfering/therapeutic use , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism
2.
Clin Cancer Res ; 28(13): 2854-2864, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35522533

ABSTRACT

PURPOSE: We designed a comprehensive multiple myeloma targeted sequencing panel to identify common genomic abnormalities in a single assay and validated it against known standards. EXPERIMENTAL DESIGN: The panel comprised 228 genes/exons for mutations, 6 regions for translocations, and 56 regions for copy number abnormalities (CNA). Toward panel validation, targeted sequencing was conducted on 233 patient samples and further validated using clinical FISH (translocations), multiplex ligation probe analysis (MLPA; CNAs), whole-genome sequencing (WGS; CNAs, mutations, translocations), or droplet digital PCR (ddPCR) of known standards (mutations). RESULTS: Canonical immunoglobulin heavy chain translocations were detected in 43.2% of patients by sequencing, and aligned with FISH except for 1 patient. CNAs determined by sequencing and MLPA for 22 regions were comparable in 103 samples and concordance between platforms was R2 = 0.969. Variant allele frequency (VAF) for 74 mutations were compared between sequencing and ddPCR with concordance of R2 = 0.9849. CONCLUSIONS: In summary, we have developed a targeted sequencing panel that is as robust or superior to FISH and WGS. This molecular panel is cost-effective, comprehensive, clinically actionable, and can be routinely deployed to assist risk stratification at diagnosis or posttreatment to guide sequencing of therapies.


Subject(s)
Multiple Myeloma , DNA Copy Number Variations , Genomics , High-Throughput Nucleotide Sequencing , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Mutation , Translocation, Genetic , Whole Genome Sequencing
3.
Andrologia ; 53(2): e13946, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33386637

ABSTRACT

Identifying causal genes of spermatogenic failure on the male-specific region of Y chromosome (MSY) has been a challenging process. Due to the nonrecombining nature of MSY, haplotype-based approaches have recently been shown to be promising in identifying associated MSY haplogroups. We conducted an MSY analysis of nonobstructive azoospermia (NOA) patients in a case-control setting (N = 278 and 105 respectively) to identify modal haplogroups strongly associated with NOA. Patients with AZF deletions (AZF+) and no AZF deletions (AZF-) were compared with the control group. Given the larger sample set of AZF- NOA patients, we further investigated the association based on histopathological severity, namely Sertoli cell-only syndrome and maturation arrest subtypes. We observed no significant enrichment of MSY haplogroups in AZF- azoospermic patients (or its subtypes). However, we observed a strongly significant association between haplogroup J2a* and AZF+ patients (FDR-corrected p = .0056; OR = 7.02, 95%CI 1.89 to 39.20), a haplogroup which also showed significant enrichment for AZFa/b deletions (p = 4x10-4 ). We conclude that unlike AZF+ patients, AZF- NOA are less likely to have an MSY causative factor with large effect size, thus indicating that the aetiology of AZF- NOA, and to some extent AZFc NOA, is more likely to be based on non-MSY factors.


Subject(s)
Azoospermia , Infertility, Male , Oligospermia , Azoospermia/genetics , Case-Control Studies , Chromosome Deletion , Chromosomes, Human, Y/genetics , Haplotypes , Humans , Infertility, Male/genetics , Male , Oligospermia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...