Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Restor Dent Endod ; 45(4): e52, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33294417

ABSTRACT

OBJECTIVES: Yttria-stabilized tetragonal phase zirconia has been used as a dental restorative material for over a decade. While it is still the strongest and toughest ceramic, its translucency remains as a significant drawback. To overcome this, stabilizing the translucency zirconia to a significant cubic crystalline phase by increasing the yttria content to more than 8 mol% (8YTZP). However, the biocompatibility of a high amount of yttria is still an important topic that needs to be investigated. MATERIALS AND METHODS: Commercially available 8YTZP plates were used. To enhance cell adhesion, proliferation, and differentiation, the surface of the 8YTZP is sequentially polished with a SiC-coated abrasive paper and surface coating with type I collagen. Fibroblast-like cells L929 used for cell adherence and cell proliferation analysis, and mouse bone marrow-derived mesenchymal stem cells (BMSC) used for cell differentiation analysis. RESULTS: The results revealed that all samples, regardless of the surface treatment, are hydrophilic and showed a strong affinity for water. Even the cell culture results indicate that simple surface polishing and coating can affect cellular behavior by enhancing cell adhesion and proliferation. Both L929 cells and BMSC were nicely adhered to and proliferated in all conditions. CONCLUSIONS: The results demonstrate the biocompatibility of the cubic phase zirconia with 8 mol% yttria and suggest that yttria with a higher zirconia content are not toxic to the cells, support a strong adhesion of cells on their surfaces, and promote cell proliferation and differentiation. All these confirm its potential use in tissue engineering.

2.
J Biomed Mater Res A ; 107(1): 6-11, 2019 01.
Article in English | MEDLINE | ID: mdl-29781218

ABSTRACT

The hydrogel is considering as functional substrates for three-dimensional (3D) environment mimicking the native tissue in vitro. To get the cell or tissue culture result in different stiffness, researchers used separate gel at different times. Sometimes these results are manipulated by surrounding environment. To overcome this, we prepared a single hydrogel with different young modulus using a 3 D printed mold and cell culture and tissue culture was performed to check the functional capacity. In this proposed device we successfully produced a multiproperties agarose hydrogel on a single platform. We designed different mold pattern to confirm that this gel formation technique can be used for any types of design and many different concentrated hydrogels can be combined together. The cell and tissue culture results showed that even in same planer surface, each gel solely maintains their own physical properties and control the cell and tissue adherence and proliferation behavior. The protocol is fairly simple and reproducible. The design helps to produce consistent gel thickness, shape, and size. This 3 D mold has provided a new way tostudy the fundamental cellular responses to engineered microenvironments that may have a high implementation in both biological and healthcare-related applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 6-11, 2019.


Subject(s)
Elastic Modulus , Hydrogels , Materials Testing , Sepharose , Animals , Cell Line , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Sepharose/chemistry , Sepharose/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...