Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Braz Dent J ; 27(6): 744-750, 2016.
Article in English | MEDLINE | ID: mdl-27982189

ABSTRACT

The study on the efficacy of oral analgesics reported that no single class of drug is effective in post-surgical dental pain. Pain following removal of third molar is most commonly used and widely accepted acute pain model for assessing the analgesic effect of drugs in humans. Reports demonstrated that analgesic efficacy in the human dental model is highly predictive. The high incidence of false-negative findings in analgesic investigations hinders the process of molecular discovery. Molecular mechanism of post-surgical pain is not known. More importantly, the animal model for postoperative dental pain is not well established. In an attempt to discover an effective post-surgical dental pain blocker with acceptable side effects, it is essential to elucidate the molecular mechanism of post-operative dental pain. The present study investigated mandibular molars extraction in rat as an animal model for the post-operative dental pain in central nervous system. Using c-Fos immunohistochemistry, we demonstrated that pre administration of GBP (150 mg/kg. i.p) significantly (p< 0.01) neutralized the surgical molar extraction induced c-Fos expression bilaterally in rat hypothalamus. Present results indicate that pain after surgical molar extraction might follow novel neural pathways therefore difficult to treat with existing anti-nociceptive drugs.


Subject(s)
Amines/pharmacology , Cyclohexanecarboxylic Acids/pharmacology , Hypothalamus/drug effects , Pain, Postoperative/drug therapy , Proto-Oncogene Proteins c-fos/metabolism , Tooth Extraction/methods , Trigeminal Nucleus, Spinal/drug effects , gamma-Aminobutyric Acid/pharmacology , Amines/therapeutic use , Animals , Cyclohexanecarboxylic Acids/therapeutic use , Gabapentin , Hypothalamus/metabolism , Male , Rats , Rats, Sprague-Dawley , Tooth Extraction/adverse effects , Trigeminal Nucleus, Spinal/metabolism , gamma-Aminobutyric Acid/therapeutic use
2.
Braz. dent. j ; 27(6): 744-750, Nov.-Dec. 2016. graf
Article in English | LILACS | ID: biblio-828064

ABSTRACT

Abstract The study on the efficacy of oral analgesics reported that no single class of drug is effective in post-surgical dental pain. Pain following removal of third molar is most commonly used and widely accepted acute pain model for assessing the analgesic effect of drugs in humans. Reports demonstrated that analgesic efficacy in the human dental model is highly predictive. The high incidence of false-negative findings in analgesic investigations hinders the process of molecular discovery. Molecular mechanism of post-surgical pain is not known. More importantly, the animal model for postoperative dental pain is not well established. In an attempt to discover an effective post-surgical dental pain blocker with acceptable side effects, it is essential to elucidate the molecular mechanism of post-operative dental pain. The present study investigated mandibular molars extraction in rat as an animal model for the post-operative dental pain in central nervous system. Using c-Fos immunohistochemistry, we demonstrated that pre administration of GBP (150 mg/kg. i.p) significantly (p< 0.01) neutralized the surgical molar extraction induced c-Fos expression bilaterally in rat hypothalamus. Present results indicate that pain after surgical molar extraction might follow novel neural pathways therefore difficult to treat with existing anti-nociceptive drugs.


Resumo O estudo da eficácia relativa dos analgésicos orais relatou que nenhuma classe única de fármaco é eficaz na dor pós-cirúrgica dental. A dor após a remoção do terceiro molar é o modelo de dor aguda mais comumente usado e amplamente aceito para avaliar o efeito analgésico de drogas em seres humanos. Os relatos demonstraram que a eficácia analgésica no modelo dental humano é altamente preditiva. A alta incidência de achados falso-negativos em investigações analgésicas dificulta o processo de descoberta molecular. O mecanismo molecular da dor pós-cirúrgica não é conhecido. Mais importante ainda, o modelo animal para a dor pós-operatória não está bem estabelecido. Numa tentativa de descobrir um bloqueador de dor dental pós-cirúrgico eficaz com efeitos secundários aceitáveis, é essencial elucidar o mecanismo molecular da dor pós-operatória dental. Neste estudo investigamos a extração de molares inferiores de ratos como modelo animal para a dor pós-operatória no sistema nervoso central. Utilizando análise imunohistoquímica de c-Fos, demonstrou-se que a administração prévia de GBP (150 mg/kg i.p) significativamente (p<0,01) neutralizou a expressão c-Fos induzida por extração molar cirúrgica bilateralmente no hipotálamo de rato. Os resultados indicam que a dor após a extração molar cirúrgica pode seguir novas vias neurais, portanto, difícil tratar com as drogas anti-nociceptivas existentes.


Subject(s)
Animals , Male , Rats , Amines/pharmacology , Cyclohexanecarboxylic Acids/pharmacology , gamma-Aminobutyric Acid/pharmacology , Hypothalamus/drug effects , Pain, Postoperative/drug therapy , Proto-Oncogene Proteins c-fos/metabolism , Tooth Extraction/methods , Trigeminal Nucleus, Spinal/drug effects , Amines/therapeutic use , Cyclohexanecarboxylic Acids/therapeutic use , gamma-Aminobutyric Acid/therapeutic use , Hypothalamus/metabolism , Rats, Sprague-Dawley , Tooth Extraction/adverse effects , Trigeminal Nucleus, Spinal/metabolism
3.
Neurol Sci ; 33(6): 1233-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22240716

ABSTRACT

Nocistatin and nociceptin/orphanin FQ (N/OFQ) are two neuropeptides which may have opposite effects in several biological functions but their neuro-anatomical sites of interaction are not fully clear. We investigated interaction between the effect of intracerebroventricular (i.c.v.) injection of nocistatin and N/OFQ, on c-Fos expression in the mouse thalamus, using c-Fos immunohistochemistry. We found that co-injection of nocistatin with N/OFQ significantly modulates c-Fos expression in the thalamus. The present study strongly suggests that "Nocistatin-Nociceptin" interaction system in the thalamus may be the promising neuromodulatory sites in the investigation of unlocking their possible therapeutic circuit in nociception, memory and anxiety.


Subject(s)
Gene Expression Regulation , Genes, fos/physiology , Opioid Peptides/administration & dosage , Thalamus/metabolism , Animals , Genes, fos/drug effects , Humans , Injections, Intraventricular , Mice , Opioid Peptides/physiology , Thalamus/drug effects , Nociceptin
4.
J Mol Neurosci ; 45(2): 101-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-20734160

ABSTRACT

A growing body of evidence suggests the existence of a functional interaction between gabapentin (GBP)-morphine system. However, the neuro-anatomical sites and molecular mechanism of action of gabapentin-morphine interaction to prevent and reverse morphine side effects as well as enhancement of the analgesic effect of morphine is not clear. Therefore, we examined the combined effects of GBP-morphine on acute morphine-induced c-Fos expression in rat nucleus accumbens. The combined effect of GBP-morphine was examined by means of c-Fos immunohistochemistry. A single intraperitoneal injection (i.p.) of morphine (10 mg/kg), saline (control), and co-injection of GBP (150 mg/kg) with morphine (5 mg/kg) was administered under anesthesia. The deeply anesthetized rats were perfused transcardially with 4% paraformaldehyde 2 h after drugs administration. Serial 40 µm thick sections of brain were cut and processed by immunohistochemistry to locate and quantify the sites and number of neurons with c-Fos immunoreactivity. Detection of c-Fos protein was performed using the peroxidase-antiperoxidase detection protocol. The present study demonstrated that, administration of GBP (150 mg/kg, i.p.) in combination with morphine (5 mg/kg, i.p.) significantly (p < 0.01) attenuated the acute morphine (5 mg/kg, i.p.)-induced c-Fos expression in the rat nucleus accumbens shell. Present results showed that GBP-morphine combination action prevented the acute morphine-induced c-Fos expression in rat nucleus accumbens. Moreover, this study provides first evidence of neuro-anatomical site and that GBP neutralized the morphine-induced activation of rat nucleus accumbens shell.


Subject(s)
Amines/pharmacology , Analgesics, Opioid/pharmacology , Cyclohexanecarboxylic Acids/pharmacology , Morphine/pharmacology , Nucleus Accumbens/drug effects , Proto-Oncogene Proteins c-fos/metabolism , gamma-Aminobutyric Acid/pharmacology , Amines/metabolism , Analgesics, Opioid/metabolism , Animals , Anticonvulsants/metabolism , Anticonvulsants/pharmacology , Cyclohexanecarboxylic Acids/metabolism , Gabapentin , Male , Morphine/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Nucleus Accumbens/cytology , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley , gamma-Aminobutyric Acid/metabolism
5.
J Mol Neurosci ; 32(1): 47-52, 2007.
Article in English | MEDLINE | ID: mdl-17873287

ABSTRACT

The neuro-anatomical sites and molecular mechanism of action of gabapentin (GBP)-morphine interaction to prevent and reverse morphine side effects as well as enhancement of the analgesic effect of morphine is not known. Therefore, we examined the combined effects of GBP-Morphine on acute morphine induced c-Fos expression in rat striatum. The combined effect of GBP-Morphine was examined by means of c-Fos immunohistochemistry. A single intraperitoneal injection (i.p.) of morphine (10 mg/kg), saline (control), co-injection of GBP (150 mg/kg) with morphine (10 mg/kg) was administered under anaesthesia. Ninety minutes after drugs administration the deeply anesthetized rats were perfused transcardially with 4% paraformaldehyde. Serial 40 mum thick sections of brain were cut and processed by immunohistochemistry to locate and quantify the sites and number of neurons with c-Fos immunoreactivity. Detection of c-Fos protein was performed using the peroxidase-antiperoxidase (PAP) detection protocol. Our present study demonstrated that, administration of GBP (150 mg/kg, i.p.) in combination with morphine (10 mg/kg, i.p.) significantly (p < 0.01) attenuated the acute morphine (10 mg/kg, i.p.) induced c-Fos expression in the rat striatum. Present results showed that GBP-morphine combination action prevented the acute morphine induced c-Fos expression in rat striatum. Moreover, this study provides first evidence of neuro-anatomical site and that GBP neutralized the morphine induced activation of rat striatum.


Subject(s)
Amines/pharmacology , Analgesics, Opioid/pharmacology , Analgesics/pharmacology , Corpus Striatum/drug effects , Cyclohexanecarboxylic Acids/pharmacology , Morphine/pharmacology , gamma-Aminobutyric Acid/pharmacology , Animals , Corpus Striatum/metabolism , Drug Interactions , Gabapentin , Immunohistochemistry , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley
6.
J Mol Neurosci ; 32(3): 228-34, 2007.
Article in English | MEDLINE | ID: mdl-17873368

ABSTRACT

Gabapentin (neurontin), a GABA analogue anticonvulsant has proven to be effective in anti-nociceptive activity as well as for the treatment of anxiety. Gabapentin (GBP) is well tolerated and shows very favorable side effects profile: The exact molecular mechanism of action of GBP to block postoperative pain and stress is not known. Therefore, to identify the functional neuroanatomical target sites of GBP in post-surgery as well as its effect on postsurgical process, we examined the effects of GBP on c-Fos expression in the supraspinal part of the central nervous system in rats. Using a well-validated rat model of surgical pain, we studied the neuroanatomical functional target sites of gabapentin after paw surgery. The effect of GBP was examined by means of c-Fos immunohistochemistry. A single intraperitoneal injection (i.p.) of GBP (150 mg/kg) or saline (control) was administered 20 min before surgical incision in the paw under anesthesia. Ninety minutes after surgical incision, the deeply anesthetized rats were perfused transcardially with 4% paraformaldehyde. Serial 40-microm-thick sections of whole brain (except spinal cord) were cut and processed by immunohistochemistry to locate and quantify the sites and number of neurons with c-Fos immunoreactivity. Detection of c-Fos protein was performed using the peroxidase-antiperoxidase detection protocol. Our present study demonstrated that compared to control, administration of GBP (150 mg/kg, i.p.) before paw surgery significantly (p < 0.01) attenuated the incision-induced c-Fos expression only in the paraventricular nucleus of the hypothalamus. In addition, GBP-induced increase in c-Fos expression was observed in the dorsal raphe (DRN) and in the nucleus raphe magnus. Present results indicate that GBP may differentially modulate c-Fos expression in surgical paw incision. Moreover, this study provides some clue to examine whether GBP exerts its action simultaneously through two separate pathways in post-surgery.


Subject(s)
Amines/pharmacology , Brain/physiology , Cyclohexanecarboxylic Acids/pharmacology , Gene Expression Regulation/drug effects , Genes, fos/physiology , Hindlimb/surgery , Neurons/physiology , Pain, Postoperative/prevention & control , Proto-Oncogene Proteins c-fos/genetics , gamma-Aminobutyric Acid/pharmacology , Analgesics/pharmacology , Animals , Brain/drug effects , Gabapentin , Genes, fos/drug effects , Kinetics , Male , Neurons/drug effects , Rats , Rats, Sprague-Dawley
7.
Neuroreport ; 18(8): 767-70, 2007 May 28.
Article in English | MEDLINE | ID: mdl-17471063

ABSTRACT

Nocistatin and nociceptin/orphanin FQ are two neuropeptides processed from the same precursor prepronociceptin. They have opposing roles in nociception and several other biological functions. Whereas the location and structure of the nociceptin/orphanin FQ receptors has been defined, the location of the nocistatin receptors remains unknown. In the course of this study, we synthesized a novel probe for histochemistry by linking biotin to the N terminus of nocistatin, and purified this with high-pressure liquid chromatography and confirmed the structure by mass spectrometer. Using this probe, we found nocistatin-binding sites in the cerebral cortex and the dorsal horn nucleus of the spinal cord. We also found that the nocistatin-binding sites were in the cell body, whereas the nociceptin/orphanin FQ binding sites were on the fibrous processes.


Subject(s)
Brain/metabolism , Opioid Peptides/metabolism , Opioid Peptides/pharmacology , Spinal Cord/metabolism , Animals , Binding Sites/drug effects , Biotinylation/methods , Brain/drug effects , Mice , Spinal Cord/drug effects
8.
Neurosignals ; 13(3): 130-3, 2004.
Article in English | MEDLINE | ID: mdl-15067200

ABSTRACT

To elucidate the effect of traumatic stress on the lateral habenular nucleus, we investigated the time course of the expression of c-Fos protein in this nucleus of the Japanese monkey (Macaca fuscata) after enucleation of one eye using c-Fos protein immunocytochemistry. c-Fos protein-like immunoreactive neurons were significantly increased; the increase started 1 h after the enucleation and remained high for 3-9 h in the lateral habenular nucleus on both sides. These results suggest that the prolonged expression of c-Fos protein occurred in the lateral habenular nucleus after traumatic stress through multiple transsynaptic activations.


Subject(s)
Eye Diseases/metabolism , Eye Enucleation , Habenula/metabolism , Proto-Oncogene Proteins c-fos/biosynthesis , Animals , Disease Models, Animal , Eye Enucleation/methods , Female , Functional Laterality , Habenula/chemistry , Immunohistochemistry/methods , Macaca fascicularis , Male , Proto-Oncogene Proteins c-fos/analysis , Stress Disorders, Traumatic/metabolism , Time Factors
9.
Brain Res ; 952(2): 331-4, 2002 Oct 18.
Article in English | MEDLINE | ID: mdl-12376196

ABSTRACT

The aim of this study was to examine the effects of one eye enucleation on the expression of c-Fos protein in the hypothalamus of the Japanese monkey (Macaca fuscata). Compared with an intact monkey, significantly increased numbers of c-Fos positive neurons were observed in the supraoptic nuclei on both sides at 1 h after eye enucleation. This maximal c-Fos expression then started to decrease at 3 h after eye enucleation. Furthermore, by a dual-labeled immunocytochemical study, the c-Fos immunoreactivity was found mainly in the vasopressinergic but not in the oxytocinergic neurons within the supraoptic nucleus. These results suggest that vasopressinergic but not oxytocinergic neurons within the supraoptic nucleus may have critical roles in the stimulation of this nucleus in response to eye enucleation.


Subject(s)
Eye Enucleation , Proto-Oncogene Proteins c-fos/biosynthesis , Supraoptic Nucleus/metabolism , Animals , Eye Enucleation/methods , Female , Macaca , Male , Neurons/chemistry , Neurons/metabolism , Proto-Oncogene Proteins c-fos/analysis , Supraoptic Nucleus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...