Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Bioeng Transl Med ; 3(3): 197-208, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30377660

ABSTRACT

Vancomycin-resistant Enterococcus (VRE) poses a serious threat in hospitals where they densely colonize the intestinal tracts of patients. In vulnerable hosts, these pathogens may translocate to the bloodstream and become lethal. The ability to selectively reduce VRE in the intestinal tracts of patients could potentially prevent many of these translocation events and reduce the spread of the pathogen. Herein, we have engineered Escherichia. coli Nissle 1917 to produce and secrete three antimicrobial peptides, Enterocin A, Enterocin B, and Hiracin JM79, to specifically target and kill Enterococcus. These peptides exhibited potent activity against both Enterococcus faecium and Enterococcus faecalis, the two most prominent species responsible for VRE infections. We first discuss the optimization of the system used to express and secrete the peptides. We then show that by simultaneously expressing these peptides, both E. faecium and E. faecalis were drastically inhibited. We then demonstrate a suppression of the development of resistance when supernatant from the E. coli producer strains was used to treat E. faecium. Finally, we tested the efficacy of the probiotic in a VRE colonization model in mice. These studies showed that administration of the engineered probiotic significantly reduced the levels of both E. faecium and E. faecalis in the feces of male Balb/cJ mice.

2.
ACS Omega ; 3(6): 6056-6065, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-29978143

ABSTRACT

Protegrin-1 (PG-1) is a cationic arginine-rich antimicrobial peptide. It is widely accepted that PG-1 induces membrane disruption by forming pores that lead to cell death. However, the insertion mechanism for these highly cationic peptides into the hydrophobic membrane environment is still poorly understood at the molecular scale. It has previously been determined that the association of arginine guanidinium and lipid phosphate groups results in strong bidentate bonds that stabilize peptide-lipid complexes. It has also been suggested that arginine residues are able to drag phosphate groups as they insert inside the membrane to form a toroidal pore. However, whether bidentate bonds play a significant role in inducing a pore formation remains unclear. To investigate the role of bidentate complexes in PG-1 translocation, we conducted molecular dynamics simulations. Two computational electroporation methods were implemented to examine the translocation process. We found that PG-1 could insert into the membrane, provided the external electric potential is large enough to first induce a water column or a pore within the lipid bilayer membrane. We also found that the highly charged PG-1 is capable in itself of inducing molecular electroporation. Substitution of arginines with charge-equivalent lysines showed a markedly reduced tendency for insertion. This indicates that the guanidinium group likely facilitates PG-1 translocation. Potential of mean force calculations suggests that peptide insertion inside the hydrophobic environment of the membrane core is not favored. We found that formation of a water column or a pore might be a prerequisite for PG-1 translocation. We also found that PG-1 can stabilize the pore after insertion. We suggest that PG-1 could be a pore inducer and stabilizer. This work sheds some light on PG-1 translocation mechanisms at the molecular level. Methods presented in this study may be extended to other arginine-rich antimicrobial and cell-penetrating peptides.

3.
Biotechnol Bioeng ; 115(10): 2394-2404, 2018 10.
Article in English | MEDLINE | ID: mdl-29940080

ABSTRACT

Modern large-scale agricultural practices that incorporate high density farming with subtherapeutic antibiotic dosing are considered a major contributor to the rise of antibiotic-resistant bacterial infections of humans with species of Salmonella being a leading agriculture-based bacterial infection. Microcin J25, a potent and highly stable antimicrobial peptide active against Enterobacteriaceae, is a candidate antimicrobial against multiple Salmonella species. Emerging evidence supports the hypothesis that the composition of the microbiota of the gastrointestinal tract prevents a variety of diseases by preventing infectious agents from proliferating. Reducing clearance of off-target bacteria may decrease susceptibility to secondary infection. Of the Enterobacteriaceae susceptible to microcin J25, Escherichia coli are the most abundant within the human gut. To explore the modulation of specificity, a collection of 207 mutants encompassing 12 positions in both the ring and loop of microcin J25 was built and tested for activity against Salmonella and E. coli strains. As has been found previously, mutational tolerance of ring residues was lower than loop residues, with 22% and 51% of mutations, respectively, retaining activity toward at least one target within the target organism test panel. The multitarget screening elucidated increased mutational tolerance at position G2, G3, and G14 than previously identified in panels composed of single targets. Multiple mutations conferred differential response between the different targets. Examination of specificity differences between mutants found that 30% showed significant improvements to specificity toward any of the targets. Generation and testing of a combinatorial library designed from the point-mutant study revealed that microcin J25I13T reduces off-target activity toward commensal human-derived E. coli isolates by 81% relative to Salmonella enterica serovar Enteritidis. These in vitro specificity improvements are likely to improve in vivo treatment efficacy by reducing clearance of commensal bacteria in the gastrointestinal tract of hosts.


Subject(s)
Bacteriocins , Escherichia coli/growth & development , Mutation , Salmonella/growth & development , Bacteriocins/chemistry , Bacteriocins/genetics , Bacteriocins/pharmacology , Humans , Microbial Sensitivity Tests
4.
Entropy (Basel) ; 20(9)2018 Sep 06.
Article in English | MEDLINE | ID: mdl-33265767

ABSTRACT

Deterministic and stochastic models of chemical reaction kinetics can give starkly different results when the deterministic model exhibits more than one stable solution. For example, in the stochastic Schlögl model, the bimodal stationary probability distribution collapses to a unimodal distribution when the system size increases, even for kinetic constant values that result in two distinct stable solutions in the deterministic Schlögl model. Using zero-information (ZI) closure scheme, an algorithm for solving chemical master equations, we compute stationary probability distributions for varying system sizes of the Schlögl model. With ZI-closure, system sizes can be studied that have been previously unattainable by stochastic simulation algorithms. We observe and quantify paradoxical discrepancies between stochastic and deterministic models and explain this behavior by postulating that the entropy of non-equilibrium steady states (NESS) is maximum.

5.
Entropy (Basel) ; 20(9)2018 Sep 12.
Article in English | MEDLINE | ID: mdl-33265789

ABSTRACT

The time evolution of stochastic reaction networks can be modeled with the chemical master equation of the probability distribution. Alternatively, the numerical problem can be reformulated in terms of probability moment equations. Herein we present a new alternative method for numerically solving the time evolution of stochastic reaction networks. Based on the assumption that the entropy of the reaction network is maximum, Lagrange multipliers are introduced. The proposed method derives equations that model the time derivatives of these Lagrange multipliers. We present detailed steps to transform moment equations to Lagrange multiplier equations. In order to demonstrate the method, we present examples of non-linear stochastic reaction networks of varying degrees of complexity, including multistable and oscillatory systems. We find that the new approach is as accurate and significantly more efficient than Gillespie's original exact algorithm for systems with small number of interacting species. This work is a step towards solving stochastic reaction networks accurately and efficiently.

6.
Mol Syst Des Eng ; 3(6): 930-941, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-31105969

ABSTRACT

Oncocin is a proline-rich antimicrobial peptide that inhibits protein synthesis by binding to the bacterial ribosome. In this work, the antimicrobial activity of oncocin was improved by systematic peptide mutagenesis and activity evaluation. We found that a pair of cationic substitutions (P4K and L7K/R) improves the activity by 2-4 fold (p<0.05) against multiple Gram-negative bacteria. An in vitro transcription / translation assay indicated that the increased activity was not because of stronger ribosome binding. Rather a cellular internalization assay revealed a higher internalization rate for the optimized analogs thereby suggesting a mechanism to increase potency. In addition, we found that the optimized peptides' benefit is dependent upon nutrient-depleted media conditions. The molecular design and characterization strategies have broad potential for development of antimicrobial peptides.

7.
J Chem Theory Comput ; 13(7): 3413-3423, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28622469

ABSTRACT

Computer simulations were performed to study the antimicrobial peptide microcin J25 (MJ25), a 21-mer peptide with an unusual lasso structure and high activity against Gram-negative bacteria. MJ25 has intracellular targets. The initial step of MJ25 acquisition in bacterial cells is binding to the outer-membrane receptor FhuA. Molecular dynamics simulations were implemented to study the binding mechanism of MJ25 to FhuA and to search for important binding residues. The absolute binding free energy calculated from combined free energy perturbation and thermodynamic integration methods agrees well with experimental data. In addition, computational mutation analysis revealed that His5 is the key residue responsible for MJ25 and FhuA association. We found that the number of hydrogen bonds is essential for binding of MJ25 to FhuA. This atomistic, quantitative insight sheds light on the mechanism of action of MJ25 and may pave a path for designing active MJ25 analogues.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacteriocins/metabolism , Escherichia coli Proteins/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacteriocins/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Hydrogen Bonding , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Mutagenesis , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Thermodynamics
8.
Sci Rep ; 7: 40695, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28094807

ABSTRACT

Despite the arsenal of technologies employed to control foodborne nontyphoidal Salmonella (NTS), infections have not declined in decades. Poultry is the primary source of NTS outbreaks, as well as the fastest growing meat sector worldwide. With recent FDA rules for phasing-out antibiotics in animal production, pressure is mounting to develop new pathogen reduction strategies. We report on a technology to reduce Salmonella enteritidis in poultry. We engineered probiotic E. coli Nissle 1917, to express and secrete the antimicrobial peptide, Microcin J25. Using in vitro experiments and an animal model of 300 turkeys, we establish the efficacy of this technology. Salmonella more rapidly clear the ceca of birds administered the modified probiotic than other treatment groups. Approximately 97% lower Salmonella carriage is measured in a treated group, 14 days post-Salmonella challenge. Probiotic bacteria are generally regarded as safe to consume, are bile-resistant and can plausibly be modified to produce a panoply of antimicrobial peptides now known. The reported systems may provide a foundation for platforms to launch antimicrobials against gastrointestinal tract pathogens, including ones that are multi-drug resistant.


Subject(s)
Antibiosis , Gastrointestinal Tract/microbiology , Probiotics , Salmonella enterica/physiology , Adenosine Monophosphate/metabolism , Animals , Microbiota , Operon , Poultry Diseases/microbiology , Salmonella Infections, Animal , Turkeys
9.
Article in English | MEDLINE | ID: mdl-28115354

ABSTRACT

Vancomycin-resistant enterococci, particularly resistant Enterococcus faecium, pose an escalating threat in nosocomial environments because of their innate resistance to many antibiotics, including vancomycin, a treatment of last resort. Many class IIa bacteriocins strongly target these enterococci and may offer a potential alternative for the management of this pathogen. However, E. faecium's resistance to these peptides remains relatively uncharacterized. Here, we explored the development of resistance of E. faecium to a cocktail of three class IIa bacteriocins: enterocin A, enterocin P, and hiracin JM79. We started by quantifying the frequency of resistance to these peptides in four clinical isolates of E. faecium We then investigated the levels of resistance of E. faecium 6E6 mutants as well as their fitness in different carbon sources. In order to elucidate the mechanism of resistance of E. faecium to class IIa bacteriocins, we completed whole-genome sequencing of resistant mutants and performed reverse transcription-quantitative PCR (qRT-PCR) of a suspected target mannose phosphotransferase (ManPTS). We then verified this ManPTS's role in bacteriocin susceptibility by showing that expression of the ManPTS in Lactococcus lactis results in susceptibility to the peptide cocktail. Based on the evidence found from these studies, we conclude that, in accord with other studies in E. faecalis and Listeria monocytogenes, resistance to class IIa bacteriocins in E. faecium 6E6 is likely caused by the disruption of a particular ManPTS, which we believe we have identified.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Enterococcus faecium/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Vancomycin-Resistant Enterococci/genetics , Bacterial Proteins/metabolism , Bacteriocins/pharmacology , Cloning, Molecular , Enterococcus faecium/drug effects , Enterococcus faecium/enzymology , Enterococcus faecium/isolation & purification , Gene Expression , Gram-Positive Bacterial Infections/microbiology , Humans , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Microbial Sensitivity Tests , Mutation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/enzymology , Vancomycin-Resistant Enterococci/isolation & purification
10.
Chem Eng Sci ; 171: 139-148, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-30899124

ABSTRACT

Many chemical reaction networks in biological systems present complex oscillatory dynamics. In systems such as regulatory gene networks, cell cycle, and enzymatic processes, the number of molecules involved is often far from the thermodynamic limit. Although stochastic models based on the probabilistic approach of the Chemical Master Equation (CME) have been proposed, studies in the literature have been limited by the challenges of solving the CME and the lack of computational power to perform large-scale stochastic simulations. In this paper, we show that the infinite set of stationary moment equations describing the stochastic Brusselator and Schnakenberg oscillatory reactions networks can be truncated and solved using maximization of the entropy of the distributions. The results from our numerical experiments compare with the distributions obtained from well-established kinetic Monte Carlo methods and suggest that the accuracy of the prediction increases exponentially with the closure order chosen for the system. We conclude that maximum entropy models can be used as an efficient closure scheme alternative for moment equations to predict the non-equilibrium stationary distributions of stochastic chemical reactions with oscillatory dynamics. This prediction is accomplished without any prior knowledge of the system dynamics and without imposing any biased assumptions on the mathematical relations among species involved.

11.
Pharmaceuticals (Basel) ; 9(4)2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27782051

ABSTRACT

Antimicrobial peptides are a promising alternative to traditional antibiotics, but their utility is limited by high production costs and poor bioavailability profiles. Bacterial production and delivery of antimicrobial peptides (AMPs) directly at the site of infection may offer a path for effective therapeutic application. In this study, we have developed a vector that can be used for the production and secretion of seven antimicrobial peptides from both Escherichia coli MC1061 F' and probiotic E.coli Nissle 1917. The vector pMPES (Modular Peptide Expression System) employs the Microcin V (MccV) secretion system and a powerful synthetic promoter to drive AMP production. Herein, we demonstrate the capacity of pMPES to produce inhibitory levels of MccV, Microcin L (MccL), Microcin N (McnN), Enterocin A (EntA), Enterocin P (EntP), Hiracin JM79 (HirJM79) and Enterocin B (EntB). To our knowledge, this is the first demonstration of such a broadly-applicable secretion system for AMP production. This type of modular expression system could expedite the development of sorely needed antimicrobial technologies.

12.
Biochemistry ; 55(36): 5106-16, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27538436

ABSTRACT

Plantaricin EF is a two-peptide bacteriocin that depends on the complementary action of two different peptides (PlnE and PlnF) to function. The structures of the individual peptides have previously been analyzed by nuclear magnetic resonance spectroscopy ( Fimland, N. et al. ( 2008 ) , Biochim. Biophys. Acta 1784 , 1711 - 1719 ), but the bacteriocin structure and how the two peptides interact have not been determined. All two-peptide bacteriocins identified so far contain GxxxG motifs. These motifs, together with GxxxG-like motifs, are known to mediate helix-helix interactions in membrane proteins. We have mutated all GxxxG and GxxxG-like motifs in PlnE and PlnF in order to determine if any of these motifs are important for antimicrobial activity and thus possibly for interactions between PlnE and PlnF. Moreover, the aromatic amino acids Tyr and Trp in PlnE and PlnF were substituted, and four fusion polypeptides were constructed in order to investigate the relative orientation of PlnE and PlnF in target cell membranes. The results obtained with the fusion polypeptides indicate that PlnE and PlnF interact in an antiparallel manner and that the C-terminus of PlnE and N-terminus of PlnF are on the outer part of target cell membranes and the N-terminus of PlnE and C-terminus of PlnF are on the inner part. The preference for an aromatic residue at position 6 in PlnE suggests a positioning of this residue in or near the membrane interface on the cells inside. Mutations in the GxxxG motifs indicate that the G5xxxG9 motif in PlnE and the S26xxxG30 motif in PlnF are involved in helix-helix interactions. Atomistic molecular dynamics simulation of a structural model consistent with the results confirmed the stability of the structure and its orientation in membranes. The simulation approved the anticipated interactions and revealed additional interactions that further increase the stability of the proposed structure.


Subject(s)
Bacteriocins/chemistry , Bacteriocins/metabolism , Dimerization , Lactobacillus plantarum/metabolism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Structure-Activity Relationship
13.
Biochim Biophys Acta ; 1858(4): 824-35, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26774214

ABSTRACT

The emergence of antibiotic resistant microorganisms poses an alarming threat to global health. Antimicrobial peptides (AMPs) are considered a possible effective alternative to conventional antibiotic therapies. An understanding of the mechanism of action of AMPs is needed in order to better control and optimize their bactericidal activity. Plantaricin EF is a heterodimeric AMP, consisting of two peptides Plantaricin E (PlnE) and Plantaricin F (PlnF). We studied the behavior of these peptides on the surface of a model lipid bilayer. We identified the residues that facilitate peptide-peptide interactions. We also identified residues that mediate interactions of the dimer with the membrane. PlnE interacts with the membrane through amino acids at both its termini, while only the N terminus of PlnF approaches the membrane. By comparing the activity of single-site mutants of the two-peptide bacteriocin and the simulations of the bacteriocin on the surface of a model lipid bilayer, structure activity relationships are proposed. These studies allow us to generate hypotheses that relate biophysical interactions observed in simulations with the experimentally measured activity. We find that single-site amino acid substitutions result in markedly stronger antimicrobial activity when they strengthen the interactions between the two peptides, while, concomitantly, they weaken peptide-membrane association. This effect is more pronounced in the case of the PlnE mutant (G20A), which interacts the strongest with PlnF and the weakest with the membrane while displaying the highest activity.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Bacteriocins/chemistry , Cell Membrane/chemistry , Lipid Bilayers/chemistry , Amino Acids/chemistry , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Bacteriocins/metabolism , Bacteriocins/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Humans , Lipid Bilayers/metabolism , Molecular Dynamics Simulation
14.
Biotechnol Bioeng ; 113(2): 414-23, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26191783

ABSTRACT

Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13 ± 3- and 18 ± 4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections.


Subject(s)
Bacteriocins/genetics , Bacteriocins/metabolism , Lactococcus lactis/metabolism , Mutagenesis , Vancomycin-Resistant Enterococci/drug effects , Lactococcus lactis/genetics , Microbial Sensitivity Tests , Microbial Viability/drug effects , Mutant Proteins/genetics , Mutant Proteins/metabolism
15.
J Chem Phys ; 142(18): 184101, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25978877

ABSTRACT

We present elements of a stability theory for small, stochastic, nonlinear chemical reaction networks. Steady state probability distributions are computed with zero-information (ZI) closure, a closure algorithm that solves chemical master equations of small arbitrary nonlinear reactions. Stochastic models can be linearized around the steady state with ZI-closure, and the eigenvalues of the Jacobian matrix can be readily computed. Eigenvalues govern the relaxation of fluctuation autocorrelation functions at steady state. Autocorrelation functions reveal the time scales of phenomena underlying the dynamics of nonlinear reaction networks. In accord with the fluctuation-dissipation theorem, these functions are found to be congruent to response functions to small perturbations. Significant differences are observed in the stability of nonlinear reacting systems between deterministic and stochastic modeling formalisms.


Subject(s)
Nonlinear Dynamics , Algorithms , Stochastic Processes , Thermodynamics
16.
Appl Environ Microbiol ; 81(11): 3889-97, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25841002

ABSTRACT

Antibiotic-resistant enterococcal infections are a major concern in hospitals where patients with compromised immunity are readily infected. Enterococcus faecium bacteria are of particular interest as these pathogens account for over 80% of vancomycin-resistant enterococcal infections. Antimicrobial peptides (AMPs) produced at the site of infection by engineered bacteria may offer a potential alternative to traditional antibiotics for the treatment of resistant bacteria such as E. faecium. For this mode of delivery to be effective, it is essential to identify a suitable protein expression system that can be used in the desired delivery bacterium. In this study, we describe a promising chloride-inducible promoter and its application in the bacterial delivery of AMPs from Lactococcus lactis to reduce counts of E. faecium bacteria in vitro. Reporter gene studies show that at chloride concentrations found within the human intestines, the chloride-inducible promoter exhibits high levels of protein expression compared to those of the commonly used nisin-inducible promoter. These results indicate that this system is powerful and would not require the exogenous administration of an inducer molecule. In its application for AMP production against E. faecium in vitro, L. lactis producing AMPs under the chloride promoter rapidly decreased E. faecium counts by nearly 10,000-fold. As an extension of this application, we also demonstrate the potential in using this type of delivery system in combination with traditional antibiotics to slow the development of resistance. Collectively, this study shows the promise of using a chloride-inducible promoter for the bacterial delivery of AMPs in the body for the treatment of vancomycin-resistant enterococci (VRE) and other antibiotic-resistant bacteria.


Subject(s)
Antibiosis , Antimicrobial Cationic Peptides/metabolism , Chlorides/metabolism , Enterococcus faecium/drug effects , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Transcriptional Activation/drug effects , Antimicrobial Cationic Peptides/genetics , Bacterial Load , Gene Expression Regulation, Bacterial/drug effects , Genetic Vectors , Humans , Microbial Sensitivity Tests , Promoter Regions, Genetic
17.
J Immunol ; 194(7): 3305-16, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25712219

ABSTRACT

The plasma protein C3 is a central element in the activation and effector functions of the complement system. A hereditary dysfunction of C3 that prevents complement activation via the alternative pathway (AP) was described previously in a Swedish family, but its genetic cause and molecular consequences have remained elusive. In this study, we provide these missing links by pinpointing the dysfunction to a point mutation in the ß-chain of C3 (c.1180T > C; p.Met(373)Thr). In the patient's plasma, AP activity was completely abolished and could only be reconstituted with the addition of normal C3. The M373T mutation was localized to the macroglobulin domain 4 of C3, which contains a binding site for the complement inhibitor compstatin and is considered critical for the interaction of C3 with the AP C3 convertase. Structural analyses suggested that the mutation disturbs the integrity of macroglobulin domain 4 and induces conformational changes that propagate into adjacent regions. Indeed, C3 M373T showed an altered binding pattern for compstatin and surface-bound C3b, and the presence of Thr(373) in either the C3 substrate or convertase-affiliated C3b impaired C3 activation and opsonization. In contrast to known gain-of-function mutations in C3, patients affected by this loss-of-function mutation did not develop familial disease, but rather showed diverse and mostly episodic symptoms. Our study therefore reveals the molecular mechanism of a relevant loss-of-function mutation in C3 and provides insight into the function of the C3 convertase, the differential involvement of C3 activity in clinical conditions, and some potential implications of therapeutic complement inhibition.


Subject(s)
Complement C3/genetics , Complement C3/immunology , Complement Pathway, Alternative , Mutation , Adult , Amino Acid Substitution , Complement Activation/genetics , Complement Activation/immunology , Complement C3/chemistry , Complement C3-C5 Convertases/metabolism , DNA Mutational Analysis , Exons , Female , Humans , Models, Molecular , Mutation, Missense , Pedigree , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs
18.
Methods Mol Biol ; 1244: 179-91, 2015.
Article in English | MEDLINE | ID: mdl-25487098

ABSTRACT

With inexpensive DNA synthesis technologies, we can now construct biological systems by quickly piecing together DNA sequences. Synthetic biology is the promising discipline that focuses on the construction of these new biological systems. Synthetic biology is an engineering discipline, and as such, it can benefit from mathematical modeling. This chapter focuses on mathematical models of biological systems. These models take the form of chemical reaction networks. The importance of stochasticity is discussed and methods to simulate stochastic reaction networks are reviewed. A closure scheme solution is also presented for the master equation of chemical reaction networks. The master equation is a complete model of randomly evolving molecular populations. Because of its ambitious character, the master equation remained unsolved for all but the simplest of molecular interaction networks for over 70 years. With the first complete solution of chemical master equations, a wide range of experimental observations of biomolecular interactions may be mathematically conceptualized. We anticipate that models based on the closure scheme described herein may assist in rationally designing synthetic biological systems.


Subject(s)
Computer Simulation , Synthetic Biology/methods , Models, Theoretical
19.
ACS Synth Biol ; 4(2): 141-9, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-24735079

ABSTRACT

Titratable systems are common tools in metabolic engineering to tune the levels of enzymes and cellular components as part of pathway optimization. For nonmodel microorganisms with limited genetic tools, inducible sugar utilization pathways offer built-in titratable systems. However, these pathways can exhibit undesirable single-cell behaviors that hamper the uniform and tunable control of gene expression. Here, we applied mathematical modeling and single-cell measurements of L-arabinose utilization in Escherichia coli to systematically explore how sugar utilization pathways can be altered to achieve desirable inducible properties. We found that different pathway alterations, such as the removal of catabolism, constitutive expression of high-affinity or low-affinity transporters, or further deletion of the other transporters, came with trade-offs specific to each alteration. For instance, sugar catabolism improved the uniformity and linearity of the response at the cost of requiring higher sugar concentrations to induce the pathway. Within these alterations, we also found that a uniform and linear response could be achieved with a single alteration: constitutively expressing the high-affinity transporter. Equivalent modifications to the D-xylose utilization pathway yielded similar responses, demonstrating the applicability of our observations. Overall, our findings indicate that there is no ideal set of typical alterations when co-opting natural utilization pathways for titratable control and suggest design rules for manipulating these pathways to advance basic genetic studies and the metabolic engineering of microorganisms for optimized chemical production.


Subject(s)
Carbohydrate Metabolism/physiology , Metabolic Engineering , Models, Theoretical , Arabinose/metabolism , Escherichia coli/metabolism
20.
ACS Synth Biol ; 4(3): 299-306, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-24896372

ABSTRACT

We designed Lactococcus lactis to detect Enterococcus faecalis. Upon detection, L. lactis produce and secrete antienterococcal peptides. The peptides inhibit enterococcal growth and reduce viability of enterococci in the vicinity of L. lactis. The enterococcal sex pheromone cCF10 serves as the signal for detection. Expression vectors derived from pCF10, a cCF10-responsive E. faecalis sex-pheromone conjugative plasmid, were engineered in L. lactis for the detection system. Recombinant host strains were engineered to express genes for three bacteriocins, enterocin A, hiracin JM79 and enterocin P, each with potent antimicrobial activity against E. faecalis. Sensitive detection and specific inhibition occur both in agar and liquid media. The engineered L. lactis also inhibited growth of multidrug-resistant E. faecium strains, when induced by cCF10. The presented vectors and strains can be components of a toolbox for the development of alternative antibiotic technologies targeting enterococci at the site of infection.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriocin Plasmids/genetics , Bacteriocins/pharmacology , Biosensing Techniques/methods , Enterococcus faecalis/drug effects , Enterococcus faecalis/isolation & purification , Lactococcus lactis/genetics , Anti-Bacterial Agents/metabolism , Bacteriocins/genetics , Bacteriocins/metabolism , Lactococcus lactis/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...