Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Vis Neurosci ; 10(4): 621-9, 1993.
Article in English | MEDLINE | ID: mdl-8101728

ABSTRACT

Melatonin biosynthesis in chick retina occurs as a circadian rhythm. Biosynthesis of the neurohormone is highest at night in darkness, and is suppressed by light. The role of gamma-aminobutyric acid (GABA) in the nocturnal regulation of melatonin synthesis was examined. Systemic or intravitreal administration of muscimol, a GABA-A receptor agonist, to light-exposed chicks at the beginning of the dark phase of the light/dark cycle increased retinal melatonin levels and the activity of serotonin N-acetyltransferase (NAT), a key regulatory enzyme of the melatonin biosynthetic pathway. Baclofen, a GABA-B receptor agonist, also increased NAT activity of light-exposed retinas, but muscimol was approximately 40-fold more potent than baclofen. Effects of both muscimol and baclofen on NAT activity were inhibited by GABA-A antagonists, bicuculline and picrotoxin, and the effect of baclofen was unaffected by the GABA-B selective antagonist, CGP 35348. Thus, activation of GABA-A receptors appears to be associated with increased melatonin biosynthesis. The GABA-uptake inhibitor, nipecotic acid, and the GABA-transaminase inhibitor, aminooxyacetic acid, also increased NAT activity of light-exposed retinas. The high levels of NAT activity associated with exposure to darkness were unaffected by either muscimol or baclofen, but picrotoxin and bicuculline significantly inhibited retinal NAT activity in darkness. The rate of dopamine synthesis, estimated from in situ tyrosine hydroxylase activity, was higher in light-exposed retinas than in darkness. Muscimol inhibited dopamine synthesis in light, and picrotoxin stimulated dopamine synthesis in darkness. The stimulation of melatonin synthesis by muscimol in light-exposed retinas appears to be related to inhibition of retinal dopamine neurons.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Dopamine/biosynthesis , Melatonin/biosynthesis , Retina/metabolism , gamma-Aminobutyric Acid/physiology , Animals , Arylamine N-Acetyltransferase/metabolism , Bicuculline/pharmacology , Chickens , Dark Adaptation , GABA-A Receptor Antagonists , Light , Picrotoxin/pharmacology , Receptors, GABA-A/metabolism , Retina/drug effects , Tyrosine 3-Monooxygenase/metabolism , gamma-Aminobutyric Acid/pharmacology
2.
Pol J Pharmacol Pharm ; 44(6): 611-25, 1992.
Article in English | MEDLINE | ID: mdl-1305960

ABSTRACT

The in vivo effects of GABA-ergic drugs on the activity of serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT), two enzymes involved in melatonin biosynthesis, were investigated in light-exposed chicken retina. The ip administration of muscimol and baclofen (direct agonists of GABA-A and GABA-B receptors, respectively), aminooxyacetic acid (an inhibitor of GABA transaminase), and nipecotic acid (an inhibitor of GABA reuptake), significantly increased the retinal NAT activity by 50-100%. Similar rises in NAT activity were observed following intraocular treatment of ether-anesthetized chickens with muscimol, baclofen and GABA. In contrast to NAT, there was no effect of the tested drugs on the retinal HIOMT activity. Aminophylline (a phosphodiesterase inhibitor) markedly elevated the retinal NAT activity, and a combined treatment with the GABA-ergic drugs and aminophylline resulted in additive effects. The actions of both muscimol and baclofen were antagonized by picrotoxin and bicuculline (two GABA-A receptor blockers), whereas the effect of baclofen was not changed by a selective GABA-B receptor blocker, CGP 35,348. Melatonin given ip significantly raised NAT activity, and its combination with muscimol further stimulated the enzyme. Picrotoxin and bicuculline given to chickens during the dark phase of 12 h light--12 h dark illumination cycle significantly suppressed the nocturnal NAT activity in retina. Neither GABA nor muscimol and baclofen significantly affected basal and forskolin (1 microM)-stimulated adenylate cyclase activity in vitro in light-exposed chicken retina. It is concluded that a GABA signal (acting through type A of GABA receptors) plays an important role in a complex mechanism regulating the rhythmic melatonin biosynthesis in vertebrate retina.


Subject(s)
Acetylserotonin O-Methyltransferase/metabolism , Arylamine N-Acetyltransferase/metabolism , Melatonin/biosynthesis , Proline/analogs & derivatives , Retina/enzymology , gamma-Aminobutyric Acid/physiology , Aminooxyacetic Acid/administration & dosage , Aminooxyacetic Acid/pharmacology , Animals , Baclofen/administration & dosage , Baclofen/pharmacology , Chickens , Injections, Intraperitoneal , Light , Male , Melatonin/pharmacology , Muscimol/administration & dosage , Muscimol/pharmacology , Nipecotic Acids/administration & dosage , Nipecotic Acids/pharmacology , Retina/drug effects , gamma-Aminobutyric Acid/pharmacology
3.
J Neurochem ; 59(4): 1499-505, 1992 Oct.
Article in English | MEDLINE | ID: mdl-1402901

ABSTRACT

The administration of melatonin, either peripherally (0.01-10 mg/kg) or intraocularly (0.001-10 mumol/eye), to light-exposed chicks dose-dependently increased serotonin N-acetyltransferase (NAT) activity in retina but not in pineal gland. The effect of melatonin was slightly but significantly reduced by luzindole (2-benzyl-N-acetyltryptamine), and not affected by two other purported melatonin antagonists, N-acetyltryptamine and N-(2,4-dinitrophenyl)-5-methoxytryptamine (ML-23). The elevation of the enzyme activity induced by melatonin was substantially stronger than that evoked by 5-hydroxytryptamine, N-acetyl-5-hydroxytryptamine, or 5-methoxytryptamine. The melatonin-evoked rise in the retinal NAT activity was counteracted by two dopamine D2 receptor agonists, quinpirole and apomorphine, and prevented by the dopamine D2 receptor blocker spiroperidol, and by an inhibitor of dopamine synthesis, alpha-methyl-p-tyrosine. Melatonin (0.1-10 mg/kg i.p.) dose-dependently decreased the levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), as well as the DOPAC/dopamine ratio, in chick retina but not in forebrain. The results obtained (1) indicate that melatonin in vivo potently inhibits dopamine synthesis selectively in retina, and (2) suggest that the increase in retinal NAT activity evoked by melatonin in light-exposed chicks is an indirect action of the compound, and results from the disinhibition of the NAT induction process from the dopaminergic (inhibitory) signal. The results provide in vivo evidence supporting the idea (derived on the basis of in vitro findings) that a mutually antagonistic interaction between melatonin and dopamine operates in retinas of living animals.


Subject(s)
Arylamine N-Acetyltransferase/metabolism , Dopamine/biosynthesis , Light , Melatonin/pharmacology , Retina/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , Acetylserotonin O-Methyltransferase/metabolism , Animals , Animals, Newborn , Chickens , Dopamine/physiology , Drug Interactions , Male , Pineal Gland/metabolism , Retina/radiation effects
4.
J Pineal Res ; 11(3-4): 116-22, 1991.
Article in English | MEDLINE | ID: mdl-1686620

ABSTRACT

A role of D2-dopaminergic neurotransmission in the regulation of melatonin biosynthesis in retina was studied in vivo in chickens. The nighttime rise in serotonin N-acetyltransferase (NAT)--the penultimate and key regulatory melatonin-synthesizing enzyme--was potently inhibited by both acute light exposure and agonists of dopamine D2-receptor (quinpirole, bromocriptine, and apomorphine). Spiroperidol, a selective dopamine D2-receptor blocker, increased the enzyme activity in light-exposed chickens, but had no effect in animals kept in darkness. Inhibitors of cyclic nucleotide phosphodiesterase, aminophylline, and 3-isobutyl-1-methylxanthine given peripherally, along with a direct adenylate cyclase activator forskolin injected directly into the eye, mimicked the action of darkness, and markedly enhanced the retinal NAT activity when administered to animals maintained in an illuminated environment. Dopamine D2-receptor agonists had no effect on aminophylline-stimulated enzyme activity, whereas spiroperidol enhanced it. Forskolin-driven NAT activity was suppressed by quinpirole. Spiroperidol and aminophylline given alone at different times of day under light conditions stimulated NAT activity, and their effects were mainly additive when given in combination. SCH 23390, a selective D1-dopamine receptor antagonist, did not affect the rise in NAT activity of chicken retina produced by either darkness or by aminophylline. The results provide further evidence that dopamine, acting via D2-receptors, mediates the inhibitory effects of light on the cyclic AMP-dependent dark-evoked induction of NAT activity in chicken retina.


Subject(s)
Arylamine N-Acetyltransferase/metabolism , Colforsin/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Receptors, Dopamine/drug effects , Retina/enzymology , Animals , Chickens , Dark Adaptation , Dopamine/pharmacology , Dopamine Agents/pharmacology , Injections , Light , Male , Retina/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL