Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850463

ABSTRACT

Usually for non-destructive testing at high temperatures, ultrasonic transducers made of PZT and silver electrodes are used, but this could lead to damage to or malfunction of the ultrasonic transducer due to poor adhesion between PZT and silver. Soldering is one of the most common types of bonding used for individual parts of ultrasonic transducers (protector, backing, matching layer, etc.), but silver should be protected using additional metal layers (copper) due to its solubility in solder. A mathematical modelling could help to predict if an ultrasonic transducer was manufactured well and if it could operate up to 225 °C. The observed von Mises stresses were very high and concentrated in metal layers (silver and copper), which could lead to disbonding under long-term cyclic temperature loads. This paper presents a multilayer ultrasonic transducer (PZT, silver electrodes, copper layers, backing), which was heated evenly from room temperature to 225 °C and then cooled down. In the B-scan, it was observed that the amplitude of the reflected signal from the bottom of the sample decreased with an increase in temperature. However, after six heating-cooling cycles, the results repeated themselves and no signs of fatigue were noticed. This ultrasonic transducer was well manufactured and could be used for non-destructive testing when the environment temperature changes in cycles up to 225 °C.

2.
Materials (Basel) ; 15(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36295311

ABSTRACT

Contemporary technologies are employing composite plate materials developed by using various innovative materials (nanostructures, mica structures, etc.). Application of higher-order modes could allow better detection and characterization of defects characteristic of planar plastic and composite structures, mainly due to shorter wavelength. However, excitation of higher-order modes meets many problems, especially in the case of the air-coupled technique, and is not sufficiently investigated. This is relevant in the cases of paper, high-density polyethylene (HDPE), membranes, GFRP, GLARE, CFRP and other composite structures. The objective of the paper was investigation of the excitation and reception of higher-order guided Lamb wave modes in plastic and composite plates. Therefore, it is appropriate to develop new non-contact ultrasonic measurement methods based on the excitation and reception of guided waves for the study of such objects. The obtained results clearly demonstrate the possibility to excite and receive efficiently different higher-order guided Lamb wave modes with very different phase velocities. The presented comparison of the experimental results with the simulation results showed a good agreement. The combination of air-coupled excitation and non-contact reception enables a non-destructive evaluation and characterization of moving plastic objects and composite structures.

3.
Materials (Basel) ; 15(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35806675

ABSTRACT

The article is devoted to the investigation of ultrasonic inspection techniques suitable for detecting hydrogen-induced cracking (HIC) and a high-temperature hydrogen attack (HTHA), which are of great importance in petrochemical and refinery industries. Four techniques were investigated: total focusing method (TFM), advanced velocity ratio (AVR) measurement, advanced ultrasonic backscatter technique (AUBT) and time of flight diffraction method using ultra low angle ultrasonic transducers (TULA). The experimental investigation has been carried out on two carbon steel samples cut off from a heat exchanger of an oil refinery and potentially affected by HIC. It was shown that the AVR technique did not reveal any damage and was not effective in the case of the investigated samples due to a thin damage zone with respect to the total thickness of the samples. The AUBT method enabled us to indicate and classify the presence of the hydrogen-induced damage; however, it is complicated to use in practise due to the need perform measurements exactly at the same position using two transducers of different frequencies. The method is more suitable for the verification of damage at a particular position, rather than for scanning. Both other methods-TFM and TULA-enabled us to identify the presence of HIC in large areas of samples. The obtained results have been verified using a metallographic analysis of the section cut from the side of the sample. The results of metallographic examinations have been compared with indications observed using above mentioned techniques and a good correspondence was obtained. It was demonstrated, that the TFM method can detect cracks with dimensions close to 200 µm, while larger cracks of 2 mm were observed very evidently using a 7.5 MHz phased array. Overall, the results suggested that the TULA method is the most suitable method for the primary detection of hydrogen-induced cracking, while the TFM is recommended for the precise assessment of the extent of the detected cracking.

4.
Sensors (Basel) ; 21(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34695992

ABSTRACT

Ultrasonic guided waves are already used for material characterization. The advantage of these waves is that they propagate in the plane of a plate and their propagation characteristics are sensitive to properties of the material. The objective of this research was to develop an ultrasonic method that could be used to measure the properties of thin plastic polyvinylchloride films (PVC). The proposed method exploits two fundamental Lamb wave modes, A0 and S0, for measurement of a thin film thickness and Young's modulus. The Young's modulus is found from the measured phased velocity of the S0 mode and the film thickness from the velocities of both A0 and S0 modes. By using the proposed semi-contactless measurement algorithm, the Young's modulus and thickness of different thickness (150 µm and 200 µm) PVC films were measured. The uncertainty of thickness measurements of the thinner 150 µm PVC film is 2% and the thicker 200 µm PVC film is 3.9%.

5.
Sensors (Basel) ; 21(9)2021 May 05.
Article in English | MEDLINE | ID: mdl-34062979

ABSTRACT

There are many fields such as online monitoring of manufacturing processes, non-destructive testing in nuclear plants, or corrosion rate monitoring techniques of steel pipes in which measurements must be performed at elevated temperatures. For that high temperature ultrasonic transducers are necessary. In the presented paper, a literature review on the main types of such transducers, piezoelectric materials, backings, and the bonding techniques of transducers elements suitable for high temperatures, is presented. In this review, the main focus is on ultrasonic transducers with piezoelectric elements suitable for operation at temperatures higher than of the most commercially available transducers, i.e., 150 °C. The main types of the ultrasonic transducers that are discussed are the transducers with thin protectors, which may serve as matching layers, transducers with high temperature delay lines, wedges, and waveguide type transducers. The piezoelectric materials suitable for high temperature applications such as aluminum nitride, lithium niobate, gallium orthophosphate, bismuth titanate, oxyborate crystals, lead metaniobate, and other piezoceramics are analyzed. Bonding techniques used for joining of the transducer elements such as joining with glue, soldering, brazing, dry contact, and diffusion bonding are discussed. Special attention is paid to efficient diffusion and thermo-sonic diffusion bonding techniques. Various types of backings necessary for improving a bandwidth and to obtain a short pulse response are described.

6.
Materials (Basel) ; 14(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668268

ABSTRACT

This article compares different air-coupled ultrasonic testing methods to characterize impact-type defects in a pultruded quasi-isotropic glass fiber-reinforced plastic (GFRP) composite plate. Using the air-coupled transducers, comparisons among three methods were performed, namely, bulk-wave through transmission, single-side access using guided waves, and ultrasonic-guided wave tomography. The air coupled through transmission technique can determine the size and shape of impact-type defects with a higher resolution, but with the consequence of time consumption and, more importantly, the necessity of access to both sides of the sample. The guided wave technique on the other hand, allows a single-side inspection and is relatively fast. It can be used to determine the size of the defect using ultrasonic B-scan, but the exact shape of the defect will be compromised. Thus, in this article, to determine the shape of the defect, application of the parallel beam tomographic reconstruction technique using guided Lamb waves is demonstrated. Furthermore, a numerical finite element simulation was performed to study the effects of guided wave propagation in the composite sample and interaction with the internal defect. Lastly, the results from the experiments of different techniques were compared according to possibilities of defect sizing and determination of its shape.

7.
Sensors (Basel) ; 20(2)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963343

ABSTRACT

At low frequencies, in thin plates the phase velocity of the guided A0 mode can become slower than that of the ultrasound velocity in air. Such waves do not excite leaky waves in the surrounding air, and therefore, it is impossible to excite and receive them by conventional air-coupled methods. The objective of this research was the development of an air-coupled technique for the reception of slow A0 mode in thin plastic films. This study demonstrates the feasibility of picking up a subsonic A0 mode in plastic films by air-coupled ultrasonic arrays. The air-coupled reception was based on an evanescent wave in air accompanying the propagating A0 mode in a film. The efficiency of the reception was enhanced by using a virtual array which was arranged from the data collected by a single air-coupled receiver. The signals measured at the points corresponding to the positions of the phase-matched array were recorded and processed. The transmitting array excited not only the A0 mode in the film, but also a direct wave in air. This wave propagated at ultrasound velocity in air and was faster than the evanescent wave. For efficient reception of the A0 mode, the additional signal-processing procedure based on the application of the 2D Fourier transform in a spatial-temporal domain. The obtained results can be useful for the development of novel air-coupled ultrasonic non-destructive testing techniques.

8.
Materials (Basel) ; 12(10)2019 May 21.
Article in English | MEDLINE | ID: mdl-31117182

ABSTRACT

The ultrasonic testing technique using Lamb waves is widely used for the non-destructive testing and evaluation of various structures. For air-coupled excitation and the reception of A0 mode Lamb waves, leaky guided waves are usually exploited. However, at low frequencies (<100 kHz), the velocity of this mode in plastic and composite materials can become slower than the ultrasound velocity in air, and its propagation in films is accompanied only by an evanescent wave in air. To date, the information about the attenuation of the slow A0 mode is very contradictory. Therefore, the objective of this investigation was the measurement of the attenuation of the slow A0 mode in thin plastic films. The measurement of the attenuation of normal displacements of the film caused by a propagating slow A0 mode is discussed. The normal displacements of the film at different distances from the source were measured by a laser interferometer. In order to reduce diffraction errors, the measurement method based on the excitation of cylindrical but not plane waves was proposed. The slow A0 mode was excited in the polyvinylchloride film by a dry contact type ultrasonic transducer made of high-efficiency PMN-32%PT strip-like piezoelectric crystal. It was found that that the attenuation of the slow A0 mode in PVC film at the frequency of 44 kHz is 2 dB/cm. The obtained results can be useful for the development of quality control methods for plastic films.

9.
Sensors (Basel) ; 18(9)2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30235795

ABSTRACT

Ultrasonic non-destructive testing techniques (NDT) based on the application of guided waves are already used for inspection of plate-type structures made of various materials, including composite materials. Air-coupled ultrasonic techniques are used to test such structures by means of guided waves. The objective of this research was development and investigation of air-coupled excitation of a slow A0 Lamb wave mode in thin plastic films by a PMN-32%PT ultrasonic array. It is known that when the velocity of the A0 mode in the film is less than the ultrasound velocity in air no leaky wave is observed in a surrounding air. It opens new possibilities for NDT of composite structures. The influence of the airborne wave may be eliminated by 3D filtering in a wavenumbers-frequency domain. A special filter and corresponding signals processing technique were developed in order to obtain directivity patterns and velocity maps of the waves propagating in all directions. The measured ultrasound velocity values prove that, with the proposed method, it is possible to excite a slow A0 Lamb wave mode and to separate it from other parasitic waves propagating in air. Measurements of the parameters of the slow A0 mode, such as the propagation velocity in the plastic film, may be applied for the material characterization.

10.
Sensors (Basel) ; 18(8)2018 Aug 11.
Article in English | MEDLINE | ID: mdl-30103507

ABSTRACT

Air-coupled excitation and reception of ultrasonic guided waves is already used for non-destructive testing and evaluation (NDT & E). Usually for air-coupled NDT & E purposes the lowest zero-order antisymmetric Lamb wave mode A0 is used, because it is most sensitive to internal defects and thickness variations. The velocity of the A0 mode is reduced with a reducing frequency and at low frequencies may become slower than the ultrasound velocity in air. Such a wave is named a slow Lamb wave. The objective of this research was the development and investigation of an air-coupled excitation method of the slow zero-order antisymmetric Lamb wave based on application of a piezoceramic ultrasonic array. We have proposed to excite the A0 mode by a planar air-coupled phased array with rectangular elements. The array is matched to the wavelength of the A0 mode in the film. Performance of such an excitation method was investigated both theoretically and experimentally. Two excitation methods of the array were analysed: when all array elements were excited simultaneously or one by one with a proper delay. In order to reduce crosstalk between array elements via the air gap, we have proposed an optimization procedure based on additional shifts of electric excitation impulses of the array elements. For experimental verification of the proposed approach a prototype of the air-coupled eight element array made of Pz-29 piezoceramic strips was manufactured. Experimental validation confirmed the possibility of exciting the slow A0 Lamb wave mode through the air gap in thin plates and films.

11.
J Med Ultrason (2001) ; 45(4): 545-553, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29536280

ABSTRACT

PURPOSE: For long time, blood clot retraction was measured only by thromboelastographic or platelet contractile force measurement techniques. The purpose of the present study was development of a novel ultrasonic method based on simultaneous monitoring of variations in the ultrasound velocity and the frequency spectrum of the signal propagating in clotting blood and its application for automatic evaluation of blood clotting parameters. METHODS: Simultaneous measurement of ultrasound velocity and variations in the frequency spectrum of wideband ultrasonic signals in clotting blood samples was performed. All measurements were performed in pulse-echo mode. Standard clinical data were obtained using routine clinical laboratory methods. RESULTS: The amplitudes of ultrasonic signals during native blood coagulation varied up to ten times for different frequencies. The measurement results of the start and duration of blood clot retraction differed between patient samples: different components of the blood coagulation system had significant impact on the blood clot retraction process. CONCLUSIONS: Our results showed that during blood clotting, the ultrasound velocity and variations in frequency spectrum should be used simultaneously to determine the beginning and duration of blood clot retraction. Our results also showed that blood clot retraction is controlled by the activity of factor XIII.


Subject(s)
Blood Coagulation Tests/methods , Blood Coagulation , Ultrasonography/methods , Adult , Blood Coagulation/genetics , Blood Coagulation/physiology , Blood Coagulation Tests/instrumentation , Equipment Design , Female , Humans , Male , Ultrasonic Waves , Ultrasonography/instrumentation
12.
Sensors (Basel) ; 17(10)2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29035348

ABSTRACT

For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used-rectangular or non-rectangular-with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz) in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was found that in order to get a wide bandwidth the length of the matching strip should be selected not a quarter wavelength λ/4 at the antiresonance frequency but at lower frequency. It allowed achieving the frequency bandwidth (14-18)% with respect to the central frequency at -3 dB level.

13.
Sensors (Basel) ; 17(1)2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28067807

ABSTRACT

Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer -11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space.

14.
Materials (Basel) ; 9(6)2016 Jun 06.
Article in English | MEDLINE | ID: mdl-28773574

ABSTRACT

Multi-wire ropes are widely used as load-carrying constructional elements in bridges, cranes, elevators, etc. Structural integrity of such ropes can be inspected by using non-destructive ultrasonic techniques. The objective of this work was to investigate propagation of ultrasonic guided waves (UGW) along composite multi-wire ropes in the cases of various types of acoustic contacts between neighboring wires and the plastic core. The modes of UGW propagating along the multi-wire ropes were identified using modelling, the dispersion curves were calculated using analytical and semi-analytical finite element (SAFE) techniques. In order to investigate the effects of UGW propagation, the two types of the acoustic contact between neighboring wires were simulated using the 3D finite element method (FE) as well. The key question of investigation was estimation of the actual boundary conditions between neighboring wires (solid or slip) and the real depth of penetration of UGW into the overall cross-section of the rope. Therefore, in order to verify the results of FE modelling, the guided wave penetration into strands of multi-wire rope was investigated experimentally. The performed modelling and experimental investigation enabled us to select optimal parameters of UGW to be used for non-destructive testing.

15.
Sensors (Basel) ; 15(8): 19393-415, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26262619

ABSTRACT

An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10(-3) g/cm(3) (1%).

16.
Medicina (Kaunas) ; 50(3): 150-5, 2014.
Article in English | MEDLINE | ID: mdl-25323542

ABSTRACT

OBJECTIVE: The aim of this study was to compare the relationship between skin tumor thickness and homogeneity and to evaluate the accuracy of 14-MHz ultrasound while measuring the thickness of different skin tumors. MATERIAL AND METHODS: The ultrasonographic and histological analysis of 72 skin tumors was performed. Preoperative vertical tumor thickness (T) and structure of 12 melanomas, 34 melanocytic nevi and 26 basal cell carcinomas was assessed by 14-MHz ultrasonography. After the tumors were excised the vertical thickness measurement (Breslow index, pT) was performed by pathologist. According to the histological thickness all skin tumors were divided to thin (≤1mm) and thick (>1mm). The accuracy of the 14-MHz ultrasound measurements and correlation between the ultrasonographic and histological tumor thickness were estimated. RESULTS: Homogeneous structure was assessed for all thin (≤1mm) and the majority (81.3%) of thick (>1mm) melanocytic skin tumors. Nonhomogeneous structure was estimated in thin and thick basal cell carcinomas, accordingly 42.9% and 31.9%. Measurements of T and pT correlated moderately in thick (>1mm) tumors (r=0.694), while in thin (≤1mm) tumors correlation was low (r=0.336). Moderate correlation between ultrasonographic and histological thickness was computed for melanocytic skin tumors as well as for basal cell carcinomas (r=0.564 and r=0.690). CONCLUSIONS: Medium frequency ultrasound is not a reliable tool for the precise measurement of thin (≤1mm) skin tumors. Ultrasonography using a 14-MHz frequency transducer enables more precisely to measure the thickness of basal cell carcinoma than melanocytic skin tumors. The 14-MHz ultrasound is support tool to suggest the morphologic type of skin tumor.


Subject(s)
Carcinoma, Basal Cell/diagnostic imaging , Melanoma/diagnostic imaging , Nevus, Pigmented/diagnostic imaging , Skin Neoplasms/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Carcinoma, Basal Cell/pathology , Female , Humans , Male , Melanoma/pathology , Middle Aged , Nevus, Pigmented/pathology , Preoperative Period , Skin Neoplasms/pathology , Ultrasonography , Young Adult
17.
Ultrasonics ; 54(4): 1104-12, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24491274

ABSTRACT

In order to perform monitoring of the polymerisation process, it is necessary to measure viscosity. However, in the case of non-Newtonian highly viscous fluids, viscosity starts to be dependent on the vibration or rotation frequency of the sensing element. Also, the sensing element must possess a sufficient mechanical strength. Some of these problems may be solved applying ultrasonic measurement methods, however until now most of the known investigations were devoted to measurements of relatively low viscosities (up to a few Pas) of Newtonian liquids. The objective of the presented work is to develop ultrasonic method for measurement of viscosity of high viscous substances during manufacturing process in extreme conditions. For this purpose the method based on application of guided Lamb waves possessing the predominant component of in-plane displacements (the S0 and the SH0 modes) and propagating in an aluminium planar waveguide immersed in a viscous liquid has been investigated. The simulations indicated that in the selected modes mainly in-plane displacements are dominating, therefore the attenuation of those modes propagating in a planar waveguide immersed in a viscous liquid is mainly caused by viscosity of the liquid. The simulation results were confirmed by experiments. All measurements were performed in the viscosity standard Cannon N2700000. Measurements with the S0 wave mode were performed at the frequency of 500kHz. The SH0 wave mode was exited and used for measurements at the frequency of 580kHz. It was demonstrated that by selecting the particular mode of guided waves (S0 or SH0), the operation frequency and dimensions of the aluminium waveguide it is possible to get the necessary viscosity measurement range and sensitivity. The experiments also revealed that the measured dynamic viscosity is strongly frequency dependent and as a characteristic feature of non-Newtonian liquids is much lower than indicated by the standards. Therefore, in order to get the absolute values of viscosity in this case an additional calibration procedure is required. Feasibility to measure variations of high dynamic viscosities in the range of (20-25,000) Pas was theoretically and experimentally proved. The proposed solution differently from the known methods in principle is more mechanically robust and better fitted for measurements in extreme conditions.

18.
Article in English | MEDLINE | ID: mdl-16060499

ABSTRACT

In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...