Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 6079, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030280

ABSTRACT

Enteric glia have been recently recognized as key components of the colonic tumor microenvironment indicating their potential role in colorectal cancer pathogenesis. Although enteric glia modulate immune responses in other intestinal diseases, their interaction with the colorectal cancer immune cell compartment remains unclear. Through a combination of single-cell and bulk RNA-sequencing, both in murine models and patients, here we find that enteric glia acquire an immunomodulatory phenotype by bi-directional communication with tumor-infiltrating monocytes. The latter direct a reactive enteric glial cell phenotypic and functional switch via glial IL-1R signaling. In turn, tumor glia promote monocyte differentiation towards pro-tumorigenic SPP1+ tumor-associated macrophages by IL-6 release. Enteric glia cell abundancy correlates with worse disease outcomes in preclinical models and colorectal cancer patients. Thereby, our study reveals a neuroimmune interaction between enteric glia and tumor-associated macrophages in the colorectal tumor microenvironment, providing insights into colorectal cancer pathogenesis.


Subject(s)
Colorectal Neoplasms , Neuroglia , Signal Transduction , Tumor Microenvironment , Animals , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Humans , Tumor Microenvironment/immunology , Neuroglia/metabolism , Mice , Macrophages/metabolism , Macrophages/immunology , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/genetics , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Interleukin-6/metabolism , Monocytes/metabolism , Monocytes/immunology , Mice, Inbred C57BL , Cell Communication , Cell Differentiation , Cell Line, Tumor , Female
2.
J Clin Invest ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042469

ABSTRACT

Crohn's disease (CD) is marked by recurring intestinal inflammation and tissue injury, often resulting in fibro-stenosis and bowel obstruction, necessitating surgical intervention with high recurrence rates. To elucidate to the mechanisms underlying fibro-stenosis in CD, we analysed the transcriptome of cells isolated from the transmural ileum of CD patients, including a trio of lesions from each patient: non-affected, inflamed, and stenotic ileum samples, and compared them with samples from non-CD patients. Our computational analysis revealed that pro-fibrotic signals from a subset of monocyte-derived cells expressing CD150 induced a disease-specific fibroblast population, resulting in chronic inflammation and tissue fibrosis. The transcription factor TWIST1 was identified as a key modulator of fibroblast activation and extracellular matrix (ECM) deposition. Genetic and pharmacological inhibition of TWIST1 prevents fibroblast activation, reducing ECM production and collagen deposition. Our findings suggest that the myeloid-stromal axis may offer a promising therapeutic target to prevent fibro-stenosis in CD.

3.
Clin Transl Gastroenterol ; 15(7): e00706, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38690831

ABSTRACT

INTRODUCTION: Approximately 50% of patients with Crohn's disease (CD) develop intestinal strictures necessitating surgery. The immune cell distribution in these strictures remains uncharacterized. We aimed to identify the immune cells in intestinal strictures of patients with CD. METHODS: During ileocolonic resections, transmural sections of terminal ileum were sampled from 25 patients with CD and 10 non-inflammatory bowel disease controls. Macroscopically unaffected, fibrostenotic, and inflamed ileum was collected and analyzed for immune cell distribution (flow cytometry) and protein expression. Collagen deposition was assessed through a Masson Trichrome staining. Eosinophil and fibroblast colocalization was assessed through immunohistochemistry. RESULTS: The Masson Trichrome staining confirmed augmented collagen deposition in both the fibrotic and the inflamed regions, though with a significant increased collagen deposition in the fibrotic compared with inflamed tissue. Distinct Th1, Th2, regulatory T cells, dendritic cells, and monocytes were identified in fibrotic and inflamed CD ileum compared with unaffected ileum of patients with CD as non-inflammatory bowel disease controls. Only minor differences were observed between fibrotic and inflamed tissue, with more active eosinophils in fibrotic deeper layers and increased eosinophil cationic protein expression in inflamed deeper layers. Last, no differences in eosinophil and fibroblast colocalization were observed between the different regions. DISCUSSION: This study characterized immune cell distribution and protein expression in fibrotic and inflamed ileal tissue of patients with CD. Immunologic, proteomic, and histological data suggest inflammation and fibrosis are intertwined, with a large overlap between both tissue types. However strikingly, we did identify an increased presence of active eosinophils only in the fibrotic deeper layers, suggesting their potential role in fibrosis development.


Subject(s)
Collagen , Crohn Disease , Eosinophils , Fibrosis , Ileum , Humans , Crohn Disease/pathology , Crohn Disease/immunology , Crohn Disease/metabolism , Eosinophils/pathology , Eosinophils/immunology , Male , Female , Adult , Ileum/pathology , Ileum/immunology , Middle Aged , Collagen/metabolism , Collagen/analysis , Fibroblasts/pathology , Fibroblasts/metabolism , Case-Control Studies , Young Adult , Constriction, Pathologic/pathology , Flow Cytometry , Dendritic Cells/immunology , Dendritic Cells/pathology , Dendritic Cells/metabolism , Immunohistochemistry
4.
Molecules ; 26(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34834064

ABSTRACT

Alcohol is metabolized in liver. Chronic alcohol abuse results in alcohol-induced fatty liver and liver injury. Red quinoa (Chenopodium formosanum) was a traditional staple food for Taiwanese aborigines. Red quinoa bran (RQB) included strong anti-oxidative and anti-inflammatory polyphenolic compounds, but it was usually regarded as the agricultural waste. Therefore, this study is to investigate the effect of water and ethanol extraction products of RQB on the prevention of liquid alcoholic diet-induced acute liver injury in mice. The mice were given whole grain powder of red quinoa (RQ-P), RQB ethanol extract (RQB-E), RQB water extract (RQB-W), and rutin orally for 6 weeks, respectively. The results indicated that RQB-E, RQB-W, and rutin decreased alcoholic diet-induced activities of aspartate aminotransferase and alanine aminotransferase, and the levels of serum triglyceride, total cholesterol, and hepatic triglyceride. Hematoxylin and eosin staining of liver tissues showed that RQB-E and RQB-W reduced lipid droplet accumulation and liver injury. However, ethanol extraction process can gain high rutin and antioxidative agents contents from red quinoa, that showed strong effects in preventing alcoholic fatty liver disease and liver injury via increasing superoxide dismutase/catalase antioxidative system and repressing the expressions of fatty acid synthesis enzyme acetyl-CoA carboxylase.


Subject(s)
Antioxidants/therapeutic use , Chenopodium quinoa , Fatty Liver, Alcoholic/prevention & control , Plant Extracts/therapeutic use , Rutin/therapeutic use , Animals , Antioxidants/chemistry , Chenopodium quinoa/chemistry , Ethanol/adverse effects , Fatty Acids/metabolism , Fatty Liver, Alcoholic/etiology , Fatty Liver, Alcoholic/metabolism , Lipogenesis/drug effects , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Plant Extracts/chemistry , Rutin/chemistry
5.
J Crohns Colitis ; 15(3): 485-498, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-32915959

ABSTRACT

BACKGROUND: Patients with inflammatory bowel disease [IBD] are considered immunosuppressed, but do not seem more vulnerable for COVID-19. Nevertheless, intestinal inflammation has shown to be an important risk factor for SARS-CoV-2 infection and prognosis. Therefore, we investigated the role of intestinal inflammation on the viral intestinal entry mechanisms, including ACE2, in IBD. METHODS: We collected inflamed and uninflamed mucosal biopsies from Crohn's disease [CD] [n = 193] and ulcerative colitis [UC] [n = 158] patients, and from 51 matched non-IBD controls for RNA sequencing, differential gene expression, and co-expression analysis. Organoids from UC patients were subjected to an inflammatory mix and processed for RNA sequencing. Transmural ileal biopsies were processed for single-cell [sc] sequencing. Publicly available colonic sc-RNA sequencing data, and microarrays from tissue pre/post anti-tumour necrosis factor [TNF] therapy, were analysed. RESULTS: In inflamed CD ileum, ACE2 was significantly decreased compared with control ileum [p = 4.6E-07], whereas colonic ACE2 was higher in inflamed colon of CD/UC compared with control [p = 8.3E-03; p = 1.9E-03]. Sc-RNA sequencing confirmed this ACE2 dysregulation and exclusive epithelial ACE2 expression. Network analyses highlighted HNF4A as key regulator of ileal ACE2, and pro-inflammatory cytokines and interferon regulating factors regulated colonic ACE2. Inflammatory stimuli upregulated ACE2 in UC organoids [p = 1.7E-02], but not in non-IBD controls [p = 9.1E-01]. Anti-TNF therapy restored colonic ACE2 regulation in responders. CONCLUSIONS: Intestinal inflammation alters SARS-CoV-2 coreceptors in the intestine, with opposing dysregulations in ileum and colon. HNF4A, an IBD susceptibility gene, seems an important upstream regulator of ACE2 in ileum, whereas interferon signalling might dominate in colon.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19 , Colitis, Ulcerative , Colon , Crohn Disease , Hepatocyte Nuclear Factor 4 , Ileum , Interferons/immunology , SARS-CoV-2/physiology , Biopsy/methods , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Colitis, Ulcerative/virology , Colon/immunology , Colon/pathology , Colon/virology , Crohn Disease/immunology , Crohn Disease/pathology , Crohn Disease/virology , Cytokines/immunology , Female , Gene Expression Regulation , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/immunology , Humans , Ileum/immunology , Ileum/pathology , Ileum/virology , Male , Middle Aged , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis
6.
AMB Express ; 9(1): 198, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31820136

ABSTRACT

Cordyceps cicadae is a well-known traditional Chinese medicine for treating palpitations and eye diseases. It contains several bioactive compounds such as adenosine, N6-(2-hydroxyethyl)-adenosine (HEA), and polysaccharide. Those bioactive compounds have been reported to perform anti-oxidation and anti-inflammatory properties and provide renal protection. In this study, we researched different fermentation conditions in order to enhance the biomass, adenosine, HEA, and polysaccharide productions of C. cicadae NTTU 868. Solid fermentation was carried out with different grain substrates (barley, oat, rice and wheat). Various submerged fermentation scales were used to produce the C. cicadae NTTU 868 mycelium. The results of solid fermentation revealed that C. cicadae NTTU 868 produced higher adenosine and HEA concentrations in oat rather than in other substrates. C. cicadae NTTU 868 mycelium had obtained the highest concentrations of adenosine and HEA on Day 2 as using the small-scale submerged fermentation. Furthermore, potato dextrose broth with extra 0.2% of yeast extract was able to result in higher HEA concentration. In conclusion, using submerged fermentation to culture C. cicadae NTTU 868 resulted in more efficient adenosine, HEA, and polysaccharide productions than using solid-fermentation, especially when 0.2% of yeast extract was used in the PDB. Importantly, this can be easily scaled-up in the fermentation industry.

7.
Nutrients ; 11(2)2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30781895

ABSTRACT

The late stages of liver fibrosis are considered to be irreversible. Red quinoa (Chenopodium formosanum Koidz), a traditional food for Taiwanese aborigines, was gradually developed as a novel supplemental food due to high dietary fibre and polyphenolic compounds. Its bran was usually regarded as the agricultural waste, but it contained a high concentration of rutin known as an antioxidant and anti-inflammatory agent. This study is to explore the effect of red quinoa bran extracts on the prevention of carbon tetrachloride (CCl4)-induced liver fibrosis. BALB/c mice were intraperitoneally injected CCl4 to induce liver fibrosis and treated with red quinoa whole seed powder, bran ethanol extracts, bran water extracts, and rutin. In the results, red quinoa powder provided more protection than rutin against CCl4-induced oxidative stress, pro-inflammatory factor expression and fibrosis development. However, the bran ethanol extract with high rutin content provided the most liver protection and anti-fibrosis effect via blocking the tumor necrosis factor alpha (TNF-α)/interleukin 6 (IL-6) pathway and transforming growth factor beta 1 (TGF-ß1) pathway.


Subject(s)
Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/prevention & control , Chenopodium quinoa , Liver Cirrhosis/chemically induced , Plant Extracts/pharmacology , Animals , Antioxidants/metabolism , Gene Expression Regulation/drug effects , Liver Cirrhosis/prevention & control , Male , Mice , Mice, Inbred BALB C , Plant Extracts/chemistry , Seeds , Thiobarbituric Acid Reactive Substances , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...