Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 20(6): e1012319, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885290

ABSTRACT

Candida albicans is a leading cause of intravascular catheter-related infections. The capacity for biofilm formation has been proposed to contribute to the persistence of this fungal pathogen on catheter surfaces. While efforts have been devoted to identifying microbial factors that modulate C. albicans biofilm formation in vitro, our understanding of the host factors that may shape C. albicans persistence in intravascular catheters is lacking. Here, we used multiphoton microscopy to characterize biofilms in intravascular catheters removed from candidiasis patients. We demonstrated that, NETosis, a type of neutrophil cell death with antimicrobial activity, was implicated in the interaction of immune cells with C. albicans in the catheters. The catheter isolates exhibited reduced filamentation and candidalysin gene expression, specifically in the total parenteral nutrition culture environment. Furthermore, we showed that the ablation of candidalysin expression in C. albicans reduced NETosis and conferred resistance to neutrophil-mediated fungal biofilm elimination. Our findings illustrate the role of neutrophil NETosis in modulating C. albicans biofilm persistence in an intravascular catheter, highlighting that C. albicans can benefit from reduced virulence expression to promote its persistence in an intravascular catheter.


Subject(s)
Biofilms , Candida albicans , Candidiasis , Catheter-Related Infections , Extracellular Traps , Fungal Proteins , Neutrophils , Humans , Biofilms/growth & development , Fungal Proteins/metabolism , Candidiasis/microbiology , Candidiasis/immunology , Catheter-Related Infections/microbiology , Neutrophils/immunology , Neutrophils/metabolism , Extracellular Traps/immunology , Catheters/microbiology , Gene Expression Regulation, Fungal
2.
Virulence ; 14(1): 2175914, 2023 12.
Article in English | MEDLINE | ID: mdl-36745535

ABSTRACT

The sucrose non-fermenting 1 (SNF1) complex is a heterotrimeric protein kinase complex that is an ortholog of the mammalian AMPK complex and is evolutionally conserved in most eukaryotes. This complex contains a catalytic subunit (Snf1), a regulatory subunit (Snf4) and a scaffolding subunit (Sip1/Sip2/Gal73) in budding yeast. Although the function of AMPK has been well studied in Saccharomyces cerevisiae and Candida albicans, the role of AMPK in Candida tropicalis has never been investigated. In this study, we focused on SNF4 in C. tropicalis as this fungus cannot produce a snf1Δ mutant. We demonstrated that C. tropicalis SNF4 shares similar roles in glucose derepression and is necessary for cell wall integrity and virulence. The expression of both SNF1 and SNF4 was significantly induced when glucose was limited. Furthermore, snf4Δ strains exhibited high sensitivity to many surface-perturbing agents because the strains contained lower levels of glucan, chitin and mannan. Interestingly, in contrast to C. albicans sak1Δ and snf4Δ, C. tropicalis snf4Δ exhibited phenotypes for cell aggregation and pseudohypha production. These data indicate that SNF4 performs convergent and divergent roles in C. tropicalis and possibly other unknown roles in the C. tropicalis SNF1-SNF4 AMPK pathway.


Subject(s)
AMP-Activated Protein Kinases , Candida tropicalis , Protein Serine-Threonine Kinases , Animals , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Candida tropicalis/genetics , Glucose/metabolism , Mammals , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics
3.
Polymers (Basel) ; 13(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804268

ABSTRACT

Chitosan is a naturally originating product that can be applied in many areas due to its biocompatibility, biodegradability, and nontoxic properties. The broad-spectrum antimicrobial activity of chitosan offers great commercial potential for this product. Nevertheless, the antimicrobial activity of chitosan varies, because this activity is associated with its physicochemical characteristics and depends on the type of microorganism. In this review article, the fundamental properties, modes of antimicrobial action, and antimicrobial effects-related factors of chitosan are discussed. We further summarize how microorganisms genetically respond to chitosan. Finally, applications of chitosan-based biomaterials, such as nanoparticles and films, in combination with current clinical antibiotics or antifungal drugs, are also addressed.

4.
Virulence ; 12(1): 281-297, 2021 12.
Article in English | MEDLINE | ID: mdl-33427576

ABSTRACT

Candida albicans is the most prevalent fungal pathogen in humans, particularly in immunocompromised patients. In this study, by screening a C. albicans mutant library, we first identified that the MSS2 gene, an ortholog of Saccharomyces cerevisiae MSS2 required for mitochondrial respiration, mediates chitosan resistance. Upon treatment with 0.2% chitosan, the growth of mss2Δ strains was strikingly impaired, and MSS2 expression was significantly repressed by chitosan. Furthermore, mss2Δ strains exhibited slow growth on medium supplemented with glycerol as the sole carbon source. Similar to the chitosan-treated wild-type strain, the mss2Δ strain exhibited a significantly impaired ATP production ability. These data suggest that an antifungal mechanism of chitosan against C. albicans acts by inhibiting MSS2 gene expression, leading to repression of mitochondrial function. Normal respiratory function is suggested to be required for fungal virulence. Interestingly, the mss2Δ mutant strains exhibited significantly impaired invasive ability in vitro and ex vivo but retained normal hyphal development ability in liquid medium. Furthermore, the MSS2 deletion strains could not form robust biofilms and exhibited significantly reduced virulence. Collectively, these results demonstrated that the antifungal effect of chitosan against C. albicans is mediated via inhibition of mitochondrial biogenesis. These data may provide another strategy for antifungal drug development via inhibition of fungal mitochondria.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/growth & development , Candida albicans/genetics , Candida albicans/pathogenicity , Chitosan/pharmacology , Mitochondria/metabolism , Animals , Candida albicans/drug effects , Candida albicans/growth & development , Candidiasis/microbiology , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Humans , Hyphae/growth & development , Male , Membrane Proteins/genetics , Mice , Mice, Inbred ICR , Mitochondria/genetics , Mitochondrial Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Virulence/genetics
5.
Microorganisms ; 8(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32369936

ABSTRACT

Molecular mechanisms of biofilm formation in Candida tropicalis and current methods for biofilm analyses in this fungal pathogen are limited. (2) Methods: Biofilm biomass and crystal violet staining of the wild-type and each gene mutant strain of C. tropicalis were evaluated on silicone under synthetic urine culture conditions. (3) Results: Seven media were tested to compare the effects on biofilm growth with or without silicone. Results showed that biofilm cells of C. tropicalis were unable to form firm biofilms on the bottom of 12-well polystyrene plates. However, on a silicone-based platform, Roswell Park Memorial Institute 1640 (RPMI 1640), yeast nitrogen base (YNB) + 1% glucose, and synthetic urine media were able to induce strong biofilm growth. In particular, replacement of Spider medium with synthetic urine in the adherence step and the developmental stage is necessary to gain remarkably increased biofilms. Interestingly, unlike Candida albicans, the C. tropicalis ROB1 deletion strain but not the other five biofilm-associated mutants did not cause a significant reduction in biofilm formation, suggesting that the biofilm regulatory circuits of the two species are divergent. (4) Conclusions: This system for C. tropicalis biofilm analyses will become a useful tool to unveil the biofilm regulatory network in C. tropicalis.

SELECTION OF CITATIONS
SEARCH DETAIL
...