Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Clin Neuroradiol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858272

ABSTRACT

PURPOSE: To investigate the feasibility of using radiomics analysis of quantitative maps from synthetic MRI to preoperatively predict diffuse glioma grades, isocitrate dehydrogenase (IDH) subtypes, and 1p/19q codeletion status. METHODS: Data from 124 patients with diffuse glioma were used for analysis (n = 87 for training, n = 37 for testing). Quantitative T1, T2, and proton density (PD) maps were obtained using synthetic MRI. Enhancing tumour (ET), non-enhancing tumour and necrosis (NET), and peritumoral edema (PE) regions were segmented followed by manual fine-tuning. Features were extracted using PyRadiomics and then selected using Levene/T, BorutaShap and maximum relevance minimum redundancy algorithms. A support vector machine was adopted for classification. Receiver operating characteristic curve analysis and integrated discrimination improvement analysis were implemented to compare the performance of different radiomics models. RESULTS: Radiomics models constructed using features from multiple tumour subregions (ET + NET + PE) in the combined maps (T1 + T2 + PD) achieved the highest AUC in all three prediction tasks, among which the AUC for differentiating lower-grade and high-grade diffuse gliomas, predicting IDH mutation status and predicting 1p/19q codeletion status were 0.92, 0.95 and 0.86 respectively. Compared with those constructed on individual T1, T2, and PD maps, the discriminant ability of radiomics models constructed on the combined maps separately increased by 11, 17 and 10% in predicting glioma grades, 35, 52 and 19% in predicting IDH mutation status, and 16, 15 and 14% in predicting 1p/19q codeletion status (p < 0.05). CONCLUSION: Radiomics analysis of quantitative maps from synthetic MRI provides a new quantitative imaging tool for the preoperative prediction of grades and molecular subtypes in diffuse gliomas.

2.
Acupunct Med ; : 9645284241256669, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859546

ABSTRACT

BACKGROUND: To date, there is no effective treatment for Alzheimer's disease (AD), a progressive neurodegenerative disorder that is increasing in prevalence worldwide. The objective of this review was to summarize the core targets and signaling pathways involved in acupuncture treatment for AD. METHODS: We reviewed numerous signaling pathways, including mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase-protein kinase B (PI3 K/Akt), adenosine monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), nuclear factor (NF)-kB, p53, Wnt, nitric oxide (NO), Janus kinase / signal transducer and activator of transcription (JAK/ STAT), RhoA/ROCK (Rho-associated protein kinase) and Ca2+/ calmodulin-dependent protein kinase II (CaMKII) / cyclic adenosine monophosphate-response element-binding protein (CREB). The relevant data were obtained from PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure (CNKI) and Wanfang databases. RESULTS: In summary, the effects of acupuncture are mediated by multiple targets and pathways. Furthermore, acupuncture can improve pathological changes associated with AD (such as abnormal deposition of amyloid (A)ß, tau hyperphosphorylation, synaptic dysfunction and neuronal apoptosis) through multiple signaling pathways. CONCLUSION: Overall, our findings provide a basis for future research into the effects of acupuncture on AD.

3.
J Chem Neuroanat ; 138: 102420, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626816

ABSTRACT

Protein aggregation is a pathological feature in various neurodegenerative diseases and is thought to play a crucial role in the onset and progression of neurological disorders. This pathological phenomenon has attracted increasing attention from researchers, but the underlying mechanism has not been fully elucidated yet. Researchers are increasingly interested in identifying chemicals or methods that can effectively detect protein aggregation or maintain protein stability to prevent aggregation formation. To date, several methods are available for detecting protein aggregates, including fluorescence correlation spectroscopy, electron microscopy, and molecular detection methods. Unfortunately, there is still a lack of methods to observe protein aggregation in situ under a microscope. This article reviews the two main aspects of protein aggregation: the mechanisms and detection methods of protein aggregation. The aim is to provide clues for the development of new methods to study this pathological phenomenon.


Subject(s)
Protein Aggregation, Pathological , Humans , Animals , Protein Aggregation, Pathological/metabolism , Protein Aggregates/physiology , Nervous System Diseases/metabolism , Neurodegenerative Diseases/metabolism
4.
Heliyon ; 10(5): e27159, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38468952

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers and the second most deadly cancer across the globe. Colorectal cancer stem cells (CCSCs) fuel CRC growth, metastasis, relapse, and chemoresistance. A complete understanding of the modulatory mechanisms of CCSC biology is essential for developing efficacious CRC treatment. In the current study, we characterized the expression and function of GTP binding protein 2 (GTPBP2) in a chemical-induced mouse CRC model. We found that GTPBP2 was expressed at a higher level in CD133+CD44+ CCSCs compared with other CRC cells. Using a lentivirus-based Cas9/sgRNA system, GTPBP2 expression was ablated in CRC cells in vitro. GTPBP2 deficiency caused the following effects on CCSCs: 1) Significantly accelerating proliferation and increasing the proportions of cells at G1, S, and G2/M phase; 2) Impairing resistance to 5-Fluorouracil; 3) Weakening self-renewal but not impacting cell migration. In addition, GTPBP2 deficiency remarkably decreased ß-catenin expression while increasing ß-catenin phosphorylation in CCSCs. These effects of GTPBP2 were present in CCSCs but not in other CRC cell populations. The Wnt agonist SKL2001 completely abolished these changes in GTPBP2-deficient CCSCs. When GTPBP2-deficient CCSCs were implanted in nude mice, they exhibited consistent changes compared with GTPBP2-expressing CCSCs. Collectively, this study indicates that GTPBP2 positively modulates Wnt signaling to reinforce the quiescence, self-renewal, and chemoresistance of mouse CCSCs. Therefore, we disclose a novel mechanism underlying CCSC biology and GTPBP2 could be a therapeutic target in future CRC treatment.

5.
Neuro Oncol ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416702

ABSTRACT

BACKGROUND: Meningioma is the most common primary intracranial tumor with high frequency of postoperative recurrence, yet the biology of meningioma malignancy process is still obscure. METHODS: To identify potential therapeutic targets and tumor suppressors, we performed single-cell transcriptome analysis through meningioma malignancy, which included 18 samples spanning normal meninges, benign and high grade in situ tumors, and lung metastases, for extensive transcriptome characterization. Tumor suppressor candidate gene and molecular mechanism were functionally validated at animal model and cellular level. RESULTS: Comprehensive analysis and validation in mice and clinical cohorts indicated Clusterin (CLU) had suppressive function for meningioma tumorigenesis and malignancy by inducing mitochondria damage and triggering type I interferon pathway dependent on its secreted isoform, and the inhibition effect was enhanced by TNFα as TNFα also induced type I interferon pathway. The expression of CLU was upregulated by histone deacetylase inhibition. Meanwhile, both intra- and extra-cellular CLU overexpression enhanced macrophage polarization towards M1 phenotype and TNFα production, thus promoted tumor killing and phagocytosis. CONCLUSIONS: CLU might be a key brake of meningioma malignance by synchronous modulating tumor cells and their microenvironment. Our work provides comprehensive insights into meningioma malignancy and a potential therapeutic strategy.

6.
Heliyon ; 10(4): e25721, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38375265

ABSTRACT

Natural killer (NK) cells constitute an active and potent anti-tumor effector population against multiple malignancies. NK cells exploit tumoricidal machinery to restrain colorectal carcinoma (CRC) expansion and invasion. Nonetheless, it is becoming increasingly evident that functional exhaustion considerably compromises the potency of NK cells in patients with CRC. To elucidate the factors that impair NK cell function in the context of CRC, we determined the role of zinc finger protein 335 (ZFP335) in modulating NK cell activity in mouse CRC induced by azoxymethane and dextran sulfate sodium. ZFP335 was profoundly decreased in NK cells in mesenteric lymph nodes of CRC-bearing mice. ZFP335 was especially diminished in NK cells that were both phenotypically and functionally exhausted. Besides, effective ZFP335 knockdown markedly undermined NK cell proliferation, tumoricidal protein production, degranulation, and cytotoxic efficacy on malignant cells, strongly suggesting that ZFP335 reinforces NK cell function. Importantly, ZFP335 knockdown lowered the expression of Janus kinase 1 (JAK1) and Janus kinase 3 (JAK3), both of which play crucial roles in NK cell homeostasis and activation. Collectively, ZFP335 down-regulation is essential for NK cell exhaustion in mesenteric lymph nodes of mice with CRC. We discovered a new ZFP335-JAK1/3 signaling pathway that modulates NK cell exhaustion.

7.
Anal Methods ; 16(3): 420-426, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38165136

ABSTRACT

The efficient extraction of phthalic acid esters (PAEs) is challenging due to their extremely low concentration, complicated matrices and hydrophilicity. Herein, hollow microspheres, as an ideal coating, possess significant potential for solid-phase microextraction (SPME) due to their fascinating properties. In this study, multiwalled carbon nanotube hollow microspheres (MWCNT-HMs) were utilized as a fiber coating for the SPME of PAEs from tea beverages. MWCNT-HMs were obtained by dissolving the polystyrene (PS) cores with organic solvents. Interestingly, MWCNT-HMs well maintain the morphology of the MWCNTs@PS precursors. The layer-by-layer (LBL) assembly of MWCNTs on PS microsphere templates was achieved through electrostatic interactions. Six PAEs, di-ethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DOP), were selected as target analytes for assessing the efficiency of the coating for SPME. The stirring rate, sample solution pH and extraction time were optimized by using the Box-Behnken design. Under optimal working conditions, the proposed MWCNT-HMs/SPME was coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) to achieve high enrichment factors (118-2137), wide linearity (0.0004-10 µg L-1), low limits of detection (0.00011-0.0026 µg L-1) and acceptable recovery (80.2-108.5%) for the detection of PAEs. Therefore, the MWCNT-HM coated fibers are promising alternatives in the SPME method for the sensitive detection of PAEs at trace levels in tea beverages.


Subject(s)
Nanotubes, Carbon , Phthalic Acids , Solid Phase Microextraction/methods , Microspheres , Gas Chromatography-Mass Spectrometry/methods , Tandem Mass Spectrometry , Phthalic Acids/analysis , Phthalic Acids/chemistry , Beverages/analysis , Tea
8.
Immunol Invest ; 53(2): 261-280, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38050895

ABSTRACT

INTRODUCTION: The role of granulocyte-macrophage-colony-stimulating factor-producing T helper (ThGM) cells in colorectal cancer (CRC) development remains unclear. This study characterizes the function of ThGM cells in mouse CRC. METHODS: Mouse CRC was induced by administrating azoxymethane and dextran sulfate sodium. The presence of ThGM cells in CRC tissues and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in ThGM cells was detected by flow cytometry. The impact of mTORC1 signaling on ThGM cell function was determined by in vitro culture. The effect of ThGM cells on CRC development was evaluated by adoptive transfer assays. RESULTS: ThGM cells, which expressed granulocyte-macrophage-colony-stimulating factor (GM-CSF), accumulated in CRC tissues. mTORC1 signaling is activated in CRC ThGM cells. mTORC1 inhibition by rapamycin suppressed ThGM cell differentiation and proliferation and resulted in the death of differentiating ThGM cells. mTORC1 inhibition in already differentiated ThGM cells did not induce significant cell death but decreased the expression of GM-CSF, interleukin-2, and tumor necrosis factor-alpha while impeding cell proliferation. Furthermore, mTORC1 inhibition diminished the effect of ThGM cells on driving macrophage polarization toward the M1 type, as evidenced by lower expression of pro-inflammatory cytokines, major histocompatibility complex class II molecule, and CD80 in macrophages after co-culture with rapamycin-treated ThGM cells. Lentivirus-mediated knockdown/overexpression of regulatory-associated protein of mTOR (Raptor) confirmed the essential role of mTORC1 in ThGM cell differentiation and function. Adoptively transferred ThGM cells suppressed CRC growth whereas mTORC1 inhibition abolished this effect. CONCLUSION: mTORC1 is essential for the anti-CRC activity of ThGM cells.


Subject(s)
Colorectal Neoplasms , Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Mice , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocytes/metabolism , Macrophages/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Sirolimus , T-Lymphocytes, Helper-Inducer , Transcription Factors
9.
Neurol Sci ; 45(2): 401-416, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37749399

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease with an insidious onset. The widespread application of omics techniques in AD has attracted considerable attention. We aimed to make a comprehensive analysis of published omics articles on AD in order to determine the research profile and application trends of omics techniques in AD. METHODS: This study utilizes bibliometric and visual methods including a map collaboration map, co-citations, and keywords to identify knowledge structures, hot topics, and research trends based on 6,828 publications from the Web of Science Core Collection (WoSCC) database. RESULTS: The results of this study showed that 5654 institutions from 91 countries published articles in this field. The USA, China, and the UK played a leading role in publishing numerous articles in relevant journals as well as prolific institutions and authors, respectively. This paper collects a large number of literatures on the application of AD omics technology from the WoSCC database and found the omics technology applied to AD is mainly based on genomics technology. The application of transcriptomics technology has shown an increasing trend in recent years, and the application of multi-omics technology will be the general trend in the future. CONCLUSION: The development status, frontier hotspots, and general trends of omics application technologies are reviewed. This article will provide intelligence support to researchers and institutions in the field of Alzheimer's omics research and applications from a practical perspective.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Bibliometrics , China , Databases, Factual
10.
Huan Jing Ke Xue ; 44(12): 6869-6879, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38098411

ABSTRACT

To investigate the effects of biochar(BC) addition on soil organic carbon(SOC) contents and its fractions under different biochar applications, Eucalyptus waste twigs in Northern Guangxi were used to produce BC at 500℃. Additionally, we sought to clarify and define the carbon sequestration potential of soil and provide a basis for the preparation of biochar from Eucalyptus forest wastes and soil improvement. In a long-term positioning test of biochar application from 1997, six different treatments were selected:0(CK), 0.5%(T1), 1%(T2), 2%(T3), 4%(T4), and 6%(T5). The contents of SOC, light fraction organic carbon(LFOC), heavy fraction organic carbon(HFOC), easily oxidized organic carbon(EOC), dissolved organic carbon(DOC), particulate organic carbon(POC), microbial biomass carbon(MBC), and carbon stock(CS) following the different treatments were measured. The results showed that:① compared to that in the control, biochar application induced an increase in each soil organic carbon fraction with increasing application rate and reached a maximum under the T4 or T5 treatments; with the increase in biochar application, the contents of SOC, DOC, EOC, POC, MBC, and CS increased significantly by 101.62%, 67.46%, 143.03%, 164.78%, 110.88%, and 41.73%, respectively. ② The contents of LFOC and HFOC in the 0-10, 10-20, and 20-30 cm soil layers increased significantly by 41.41%-140.63%, 9.26%-87.04%, and -19.54%-106.90% and 15.32%-78.99%, 15.72%-75.25%, and 89.49%-148.64%, respectively, with the increase in biochar application. The average contents of LFOC and HFOC in the 0-30 cm soil layer also increased gradually. The soil carbon pool of the Eucalyptus forest was dominated by a relatively stable heavy fraction organic carbon. ③ The contents of carbon stock, soil organic carbon, and its fractions decreased with the increase in soil depth. In conclusion, the application of forestry waste biochar for five years could significantly increase the content of SOC and its components, thereby increasing soil organic carbon activity. Therefore, increasing the amount of biochar was an effective measure to enhance the carbon storage, soil stable carbon pool, and soil quality of the Eucalyptus plantation field. This study provides a reference for the resource utilization of forestry waste and improvements in soil fertility of Eucalyptus plantations.


Subject(s)
Carbon , Eucalyptus , Carbon/analysis , Soil , China
11.
BMC Musculoskelet Disord ; 24(1): 858, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919740

ABSTRACT

BACKGROUND: Acetabular dome impaction fractures (ADIF) are difficult to reduce and have a high failure rate. Consistency between the acetabulum and the femoral head is usually assessed using intraoperative X-ray fluoroscopy to evaluate the quality of fracture reduction. This study examines the effects of intraoperative mobile 2D/3DX imaging system (O-arm) on the reduction quality and functional recovery of ADIF. METHODS: We retrospectively analysed the data of 48 patients with ADIF treated at Honghui Hospital between October 2018 and October 2021.The patients were divided into the X-ray and O-arm groups. The residual step-off and gap displacements in the acetabular dome region were measured, and fracture reduction quality was evaluated. Hip function was evaluated using the modified Merle d'Aubigné and Postel scoring systems. RESULTS: There were no significant intergroup differences in the preoperative general data (p > 0.05). The mean residual average step displacement in the acetabular dome region was 3.48 ± 2.43 mm and 1.61 ± 1.16 mm (p < 0.05), while the mean gap displacement was 6.72 ± 3.69 mm and 3.83 ± 1.67 mm (p < 0.05) in the X-ray and the O-arm groups, respectively. In the X-ray group, according to the fracture reduction criteria described by Verbeek and Moed et al., one case was excellent, 13 cases were good, 11 cases were poor; 56% were excellent or good. In the O-arm group, seven cases were excellent, 12 cases were good, and four cases were poor; overall in this group, 82.6% were excellent or good (p < 0.05). A total of 46 patients achieved fracture healing at the last follow-up. In the X-ray group, according to the modified Merle d'Aubigné and Postel function score, three cases were excellent,12 cases were good, six cases were middle, three cases were poor; 62.5% were excellent or good, In the O-arm group, 15 cases were excellent, four cases were good, two cases were middle, one case was poor; 86.4% were excellent or good (p < 0.05). CONCLUSIONS: The application of O-arm in ADIF can improve fracture reduction quality and functional recovery.


Subject(s)
Fractures, Bone , Hip Fractures , Spinal Fractures , Surgery, Computer-Assisted , Humans , Retrospective Studies , Imaging, Three-Dimensional , Treatment Outcome , Tomography, X-Ray Computed , Hip Fractures/surgery , Acetabulum/diagnostic imaging , Acetabulum/surgery , Acetabulum/injuries , Fractures, Bone/surgery , Fracture Fixation, Internal/methods
12.
Epigenomics ; 15(21): 1101-1119, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37990886

ABSTRACT

Aim: Conservative treatment approaches for thyroid carcinoma (TC) patients with wild-type B-type Raf kinase (BRAF) pose risks of long-term recurrence. The association of DNA methylation with TC metastasis is unclear. Patients & methods: Here we analyzed data from 179 BRAF wild-type TC patients in the The Cancer Genome Atlas database, identifying significant metastasis-associated CpGs. A logistic regression model was developed and validated for discriminating lymphatic metastasis in BRAF wild-type TC. Results: The model showed high accuracy (AUC: 0.924 training set; 0.812 and 0.773 external cohorts). TAGLN, MRPL4, CLDN10 and GRIK2 emerged as diagnostic markers. GRIK2, downregulated due to promoter hypermethylation, acted as a TC suppressor. Conclusion: Our 5-CpG epigenetic signature effectively discriminates lymphatic metastasis in BRAF wild-type TC, highlighting GRIK2's tumor-suppressive role influenced by promoter hypermethylation.


Subject(s)
Proto-Oncogene Proteins B-raf , Thyroid Neoplasms , Humans , DNA Methylation , Epigenesis, Genetic , Lymphatic Metastasis , Mutation , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , GluK2 Kainate Receptor
13.
Mol Biomed ; 4(1): 29, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37718386

ABSTRACT

Approximately 30% of lymphomas occur outside the lymph nodes, spleen, or bone marrow, and the incidence of extranodal lymphoma has been rising in the past decade. While traditional chemotherapy and radiation therapy can improve survival outcomes for certain patients, the prognosis for extranodal lymphoma patients remains unsatisfactory. Extranodal lymphomas in different anatomical sites often have distinct cellular origins, pathogenic mechanisms, and clinical manifestations, significantly influencing their diagnosis and treatment. Therefore, it is necessary to provide a comprehensive summary of the pathogenesis, diagnosis, and treatment progress of extranodal lymphoma overall and specifically for different anatomical sites. This review summarizes the current progress in the common key signaling pathways in the development of extranodal lymphomas and intervention therapy. Furthermore, it provides insights into the pathogenesis, diagnosis, and treatment strategies of common extranodal lymphomas, including gastric mucosa-associated lymphoid tissue (MALT) lymphoma, mycosis fungoides (MF), natural killer/T-cell lymphoma (nasal type, NKTCL-NT), and primary central nervous system lymphoma (PCNSL). Additionally, as PCNSL is one of the extranodal lymphomas with the worst prognosis, this review specifically summarizes prognostic indicators and discusses the challenges and opportunities related to its clinical applications. The aim of this review is to assist clinical physicians and researchers in understanding the current status of extranodal lymphomas, enabling them to make informed clinical decisions that contribute to improving patient prognosis.

14.
J Cell Physiol ; 238(10): 2191-2205, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37642377

ABSTRACT

Primary central nervous system lymphoma (PCNSL) is a rare and invasive diffuse large B cell lymphoma confined in central nervous system (CNS). The effort to press forward the translational progress has been frustrated by the insufficient understanding of immunophenotype of CNS and tumor genetic alterations of PCNSL, and the lack of validated diagnostic biomarkers. Researchers now have a variety of PCNSL animal models at their disposal that resemble the morphology and immunophenotype of PCNSL, however, a careful and detailed re-examination of these animal models is needed to clarify the differences in genetic alterations, migration capability, and immune status. In this review, we present the knowledge about the phenotypic and genotypic features of PCNSL tumor cells, and compile the preclinical animal models of PCNSL with regard to various injection sites, cell origins, recipient animals, and immune status, and elaborate on the tropism and migration of tumor cells and novel therapeutic strategies for PCNSL. We envisage that the selection of suitable animal models will serve as a well-defined preclinical system to understand the molecular pathogenesis of PCNSL, thereby galvanizing the development of novel and potent therapeutic approaches.

15.
J Chromatogr A ; 1705: 464211, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37480725

ABSTRACT

A reversed-phase chromatographic process is developed on a centrifugal platform to separate and collect water-soluble dyes from a mixture. A separation column filled with C18-reversed phase silica gel was used to separate the components from a mixture and the eluate was collected by a series of collecting chambers. The purified components can then be identified and extracted from the collecting chambers. The effects of the silica gel's particle size (7-10, 20-45, and 46-63 µm) and the platform's rotational speed (1000, 1500, 2000 RPM) on the separation and collection efficiency were investigated. Experimental results showed that dye separation could be well performed in the column with smaller-sized silica gels (7-10 µm) under a low rotational speed (1000 RPM). However, for the eluate collection, the high eluent flowrate and long processing time resulted in a convective band-broadening problem in the collecting chambers, which affected the recovery ratio of the dyes. Experimental results showed that the convective band broadening effect can be reduced by reducing the flowrate, shortening the collecting time, and switching the eluent to a different composition. The best recovery ratio of the dyes in the current design can be achieved by using the column with a powder size distribution of 46-63 µm and operating at the rotational speed of 1500 RPM. This platform can process a sample volume of 1 µL and the processing time is about 30 min. Since the only instrument used is a motor, the complete chromatographic process, from separation to fraction collection, can be carried out on a centrifugal platform at a low cost.


Subject(s)
Coloring Agents , Water , Silica Gel , Chromatography, Liquid , Chromatography, Reverse-Phase/methods , Indicators and Reagents , Chromatography, High Pressure Liquid/methods
16.
Cell Rep Med ; 4(8): 101129, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37480849

ABSTRACT

Moderate inflammation is essential for standard wound healing. In pathological conditions, such as diabetes, protracted and refractory wounds are associated with excessive inflammation, manifested by persistent proinflammatory macrophage states. However, the mechanisms are still unclear. Herein, we perform a metabolomic profile and find a significant phenylpyruvate accumulation in diabetic foot ulcers. Increased phenylpyruvate impairs wound healing and augments inflammatory responses, whereas reducing phenylpyruvate via dietary phenylalanine restriction relieves uncontrolled inflammation and benefits diabetic wounds. Mechanistically, phenylpyruvate is ingested into macrophages in a scavenger receptor CD36-dependent manner, binds to PPT1, and inhibits depalmitoylase activity, thus increasing palmitoylation of the NLRP3 protein. Increased NLRP3 palmitoylation is found to enhance NLRP3 protein stability, decrease lysosome degradation, and promote NLRP3 inflammasome activation and the release of inflammatory factors, such as interleukin (IL)-1ß, finally triggering the proinflammatory macrophage phenotype. Our study suggests a potential strategy of targeting phenylpyruvate to prevent excessive inflammation in diabetic wounds.


Subject(s)
Diabetes Mellitus , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Wound Healing/physiology , Inflammation
17.
Metabolites ; 13(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36837920

ABSTRACT

Myopic retinopathy is an important cause of irreversible vision loss and blindness. As metabolomics has recently been successfully applied in myopia research, this study sought to characterize the serum metabolic profile of myopic retinopathy in children and adolescents (4-18 years) and to develop a diagnostic model that combines clinical and metabolic features. We selected clinical and serum metabolic data from children and adolescents at different time points as the training set (n = 516) and the validation set (n = 60). All participants underwent an ophthalmologic examination. Untargeted metabolomics analysis of serum was performed. Three machine learning (ML) models were trained by combining metabolic features and conventional clinical factors that were screened for significance in discrimination. The better-performing model was validated in an independent point-in-time cohort and risk nomograms were developed. Retinopathy was present in 34.2% of participants (n = 185) in the training set, including 109 (28.61%) with mild to moderate myopia. A total of 27 metabolites showed significant variation between groups. After combining Lasso and random forest (RF), 12 modelled metabolites (mainly those involved in energy metabolism) were screened. Both the logistic regression and extreme Gradient Boosting (XGBoost) algorithms showed good discriminatory ability. In the time-validation cohort, logistic regression (AUC 0.842, 95% CI 0.724-0.96) and XGBoost (AUC 0.897, 95% CI 0.807-0.986) also showed good prediction accuracy and had well-fitted calibration curves. Three clinical characteristic coefficients remained significant in the multivariate joint model (p < 0.05), as did 8/12 metabolic characteristic coefficients. Myopic retinopathy may have abnormal energy metabolism. Machine learning models based on metabolic profiles and clinical data demonstrate good predictive performance and facilitate the development of individual interventions for myopia in children and adolescents.

18.
BMC Cancer ; 23(1): 8, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36597096

ABSTRACT

OBJECTIVE: To explore the histopathological characteristics of paired recurrent gliomas and their clinical significance. METHODS: Glioma patients who received both primary surgery and reoperation when recurrence at Sun Yat-sen University Cancer Center from June 2001 to June 2019 were enrolled. Clinical and pathological characteristics were analyzed retrospectively, and histopathology of reoperation specimens was divided into three categories according to tumor cell activity and the degree of necrosis: active group, low-activity group, and necrosis group. RESULTS: A total of 89 patients were included in this study. The 2016 WHO grade of the first operation pathology and IDH1 status were related to survival time after the first operation, but there was no significant association with survival time after reoperation. The time interval between primary and reoperation was shorter for primary high-grade glioma and/or IDH1 wild-type tumor patients than for low-grade glioma and/or IDH1 mutant tumor patients (P < 0.001). Histopathological types of recurrent gliomas were analyzed, and 67 cases (75.3%) were classified into the active group, 14 (15.8%) into the low-activity group, and 8 (8.9%) into the necrosis group. The low-activity or necrosis group was associated with a higher radiotherapy dose and shorter operation interval. Further univariate and multivariate Cox survival analyses showed the histopathological patterns of recurrent gliomas to be related to survival time after reoperation. CONCLUSION: Primary WHO low grade or IDH1 mutant gliomas appeared survival benefit mainly on later recurrence, but was not a prognostic predictor following recurrence. Histopathological feature of recurrent glioma is related to previous treatment, including radiotherapy dosage and chemotherapy treatment, and is also an important independent prognostic factor for patients after reoperation.


Subject(s)
Brain Neoplasms , Glioma , Humans , Cohort Studies , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Brain Neoplasms/metabolism , Retrospective Studies , Clinical Relevance , Glioma/genetics , Glioma/surgery , Glioma/drug therapy , Prognosis , Necrosis , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mutation
19.
Acta Pharmacol Sin ; 44(7): 1416-1428, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36721007

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a major health concern worldwide, and the incidence of metabolic disorders associated with NAFLD is rapidly increasing because of the obesity epidemic. There are currently no approved drugs that prevent or treat NAFLD. Recent evidence shows that bavachin, a flavonoid isolated from the seeds and fruits of Psoralea corylifolia L., increases the transcriptional activity of PPARγ and insulin sensitivity during preadipocyte differentiation, but the effect of bavachin on glucose and lipid metabolism remains unclear. In the current study we investigated the effects of bavachin on obesity-associated NAFLD in vivo and in vitro. In mouse primary hepatocytes and Huh7 cells, treatment with bavachin (20 µM) significantly suppressed PA/OA or high glucose/high insulin-induced increases in the expression of fatty acid synthesis-related genes and the number and size of lipid droplets. Furthermore, bavachin treatment markedly elevated the phosphorylation levels of AKT and GSK-3ß, improving the insulin signaling activity in the cells. In HFD-induced obese mice, administration of bavachin (30 mg/kg, i.p. every other day for 8 weeks) efficiently attenuated the increases in body weight, liver weight, blood glucose, and liver and serum triglyceride contents. Moreover, bavachin administration significantly alleviated hepatic inflammation and ameliorated HFD-induced glucose intolerance and insulin resistance. We demonstrated that bavachin protected against HFD-induced obesity by inducing fat thermogenesis and browning subcutaneous white adipose tissue (subWAT). We revealed that bavachin repressed the expression of lipid synthesis genes in the liver of obese mice, while promoting the expression of thermogenesis, browning, and mitochondrial respiration-related genes in subWAT and brown adipose tissue (BAT) in the mice. In conclusion, bavachin attenuates hepatic steatosis and obesity by repressing de novo lipogenesis, inducing fat thermogenesis and browning subWAT, suggesting that bavachin is a potential drug for NAFLD therapy.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Mice, Obese , Glycogen Synthase Kinase 3 beta/metabolism , Liver/metabolism , Obesity/complications , Obesity/drug therapy , Obesity/genetics , Flavonoids/pharmacology , Diet , Glucose/metabolism , Insulin/metabolism , Diet, High-Fat , Mice, Inbred C57BL
20.
JAMA Netw Open ; 6(1): e2253285, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36705923

ABSTRACT

Importance: High-grade gliomas (HGGs) constitute the most common and aggressive primary brain tumor, with 5-year survival rates of 30.9% for grade 3 gliomas and 6.6% for grade 4 gliomas. The add-on efficacy of interferon alfa is unclear for the treatment of HGG. Objectives: To compare the therapeutic efficacy and toxic effects of the combination of temozolomide and interferon alfa and temozolomide alone in patients with newly diagnosed HGG. Design, Setting, and Participants: This multicenter, randomized, phase 3 clinical trial enrolled 199 patients with newly diagnosed HGG from May 1, 2012, to March 30, 2016, at 15 Chinese medical centers. Follow-up was completed July 31, 2021, and data were analyzed from September 13 to November 24, 2021. Eligible patients were aged 18 to 75 years with newly diagnosed and histologically confirmed HGG and had received no prior chemotherapy, radiotherapy, or immunotherapy for their HGG. Interventions: All patients received standard radiotherapy concurrent with temozolomide. After a 4-week break, patients in the temozolomide with interferon alfa group received standard temozolomide combined with interferon alfa every 28 days. Patients in the temozolomide group received standard temozolomide. Main Outcomes and Measures: The primary end point was 2-year overall survival (OS). Secondary end points were 2-year progression-free survival (PFS) and treatment tolerability. Results: A total of 199 patients with HGG were enrolled, with a median follow-up time of 66.0 (95% CI, 59.1-72.9) months. Seventy-nine patients (39.7%) were women and 120 (60.3%) were men, with ages ranging from 18 to 75 years and a median age of 46.9 (95% CI, 45.3-48.7) years. The median OS of patients in the temozolomide plus interferon alfa group (26.7 [95% CI, 21.6-31.7] months) was significantly longer than that in the standard group (18.8 [95% CI, 16.9-20.7] months; hazard ratio [HR], 0.64 [95% CI, 0.47-0.88]; P = .005). Temozolomide plus interferon alfa also significantly improved median OS in patients with O6-methylguanine-DNA methyltransferase (MGMT) unmethylation (24.7 [95% CI, 20.5-28.8] months) compared with temozolomide (17.4 [95% CI, 14.1-20.7] months; HR, 0.57 [95% CI, 0.37-0.87]; P = .008). Seizure and influenzalike symptoms were more common in the temozolomide plus interferon alfa group, with 2 of 100 (2.0%) and 5 of 100 (5.0%) patients with grades 1 and 2 toxic effects, respectively (P = .02). Finally, results suggested that methylation level at the IFNAR1/2 promoter was a marker of sensitivity to temozolomide plus interferon alfa. Conclusions and Relevance: Compared with the standard regimen, temozolomide plus interferon alfa treatment could prolong the survival time of patients with HGG, especially the MGMT promoter unmethylation variant, and the toxic effects remained tolerable. Trial Registration: ClinicalTrials.gov Identifier: NCT01765088.


Subject(s)
Brain Neoplasms , Glioma , Female , Humans , Male , Middle Aged , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Alkylating/adverse effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Dacarbazine/therapeutic use , Glioma/drug therapy , Interferon-alpha/therapeutic use , Temozolomide/therapeutic use , Adolescent , Young Adult , Adult , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...