Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 414(5): 1909-1919, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35066603

ABSTRACT

We developed a triple-readout probe for colorimetric, fluorescent, and fluorescence-lifetime sensing of alkaline phosphatase (ALP) through the hydrolyzed ascorbic acid phosphate (AAP)-mediated formation of silver nanoparticles (AgNPs) on Ag+-deposited MoS2 quantum dots (QDs). Ag+ ions were self-assembled on a monolayer MoS2 QD surface through the formation of Ag-S bonds. When ALP hydrolyzed AAP in an alkaline buffer, the resultant ascorbic acid (AA) triggered the reduction of the bound Ag+ ions into AgNPs on the MoS2 QD surface. The resultant AgNPs induced an efficient fluorescence quenching of the MoS2 QDs through simultaneous static and dynamic quenching processes, generated an intense surface plasmon resonance peak, and triggered a reduction in the fluorescence lifetime of the MoS2 QDs. Electron microscopy and spectroscopic techniques revealed the successful fabrication of Ag+-deposited MoS2 QDs and the ALP-mediated formation of AgNPs on the MoS2 QD surface. The linear quantification ranges for ALP were 0.05-2.5, 0.1-4, and 1-4 units L-1 in the fluorescent, colorimetric, and fluorescence-lifetime detection modes, respectively. In addition, the proposed probe integrated with an ALP-linked sandwich immunoassay exhibited high sensitivity and selectivity for the fluorescence sensing of rabbit immunoglobulin G with a detection limit of 8 pg mL-1 and linear range of 25-1000 pg mL-1. The sensitivity of the probe is comparable to those of previously reported immunoassays involving ultrasensitive electrochemical detection, hydrogen evolution reactions, or electron spin resonance. The probe integrated with the sandwich assay serves as a promising platform for the detection of target proteins in clinical samples.


Subject(s)
Alkaline Phosphatase/metabolism , Colorimetry/methods , Disulfides/chemistry , Fluorescence , Molybdenum/chemistry , Quantum Dots/chemistry , Silver/chemistry , Animals , Rabbits
2.
Biosens Bioelectron ; 69: 46-53, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25703728

ABSTRACT

This study describes the synthesis of a dual emission probe for the fluorescent ratiometric sensing of hydrogen peroxide (H2O2), enzyme activity, and environmental pH change. Green-emitting fluorescein-5-isothiocyanate (FITC) was conjugated to the amino groups of bovine serum albumin (BSA). This FITC-conjugated BSA acted as a template for the synthesis of red-emitting gold nanoclusters (AuNCs) under alkaline conditions. Under single wavelength excitation, FITC/BSA-stabilized AuNCs (FITC/BSA-AuNCs) emitted fluorescence at 525 and 670nm, which are sensitive to changes in solution pH and H2O2 concentration, respectively. The effective fluorescence quenching of AuNCs by H2O2 enabled FITC/BSA-AuNCs to ratiometrically detect the H2O2 product-related enzyme system and its inhibition, including glucose oxidase-catalyzed oxidation of glucose, acetylcholinesterase/choline oxidase-mediated hydrolysis and oxidation of acetylcholine, and paraoxon-induced inhibition of acetylcholinesterase activity. When pH-insensitive AuNCs were used as an internal standard, FITC/BSA-AuNCs offered a sensitive and reversible ratiometric sensing of a 0.1-pH unit change in the pH range 5.0-8.5. The pH-induced change in FITC fluorescence enabled FITC/BSA-AuNCs to detect an ammonia product-related enzyme system. This was exemplified with the determination of urea in plasma by urease-mediated hydrolysis of urea.


Subject(s)
Enzymes/chemistry , Fluorescein-5-isothiocyanate/chemistry , Hydrogen Peroxide/chemistry , Metal Nanoparticles/chemistry , Protein Interaction Mapping/methods , Spectrometry, Fluorescence/methods , Binding Sites , Crystallization/methods , Enzymes/ultrastructure , Fluorescent Dyes/chemistry , Gold/chemistry , Hydrogen Peroxide/analysis , Hydrogen-Ion Concentration , Metal Nanoparticles/ultrastructure , Nanoconjugates/chemistry , Nanoconjugates/ultrastructure , Protein Binding , Serum Albumin, Bovine/chemistry , Substrate Specificity
3.
ACS Appl Mater Interfaces ; 6(20): 17437-45, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25238563

ABSTRACT

This study describes a simple method for removing mercuric ions (Hg(2+)) from a high-salt matrix based on the use of Tween-20-stabilized gold nanoparticles (Tween 20-Au NPs) as Hg(2+) adsorbents and composites of reduced graphite oxide and Fe3O4 NPs as NP collectors. Citrate ions adsorbed on the surface of the Tween 20-Au NPs reduced Hg(2+) to Hg(0), resulting in the deposition of Hg(0) on the surface of the NPs. To circumvent time-consuming centrifugation and transfer steps, the Hg(0)-containing gold NPs were collected using reduced graphite oxide-Fe3O4 NP composites. Compared with the reported NP-based methods for removing Hg(2+), Tween 20-Au NPs offered the rapid (within 30 min), efficient (>99% elimination efficiency), durable (>10 cycles), and selective removal of Hg(2+), CH3Hg(+), and C2H5Hg(+) in a high-salt matrix without the interference of other metal ions. This was attributed to the fact that the dispersed Tween 20-Au NPs exhibited large surface-area-to-volume ratio to bind Hg(2+) through Hg(2+)-Au(+) metallophilic interactions in a high-salt matrix. The formation of graphite oxide sheets and reduced graphite oxide-Fe3O4 NP composites was demonstrated using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectrometry, and transmission electron microscopy. The mechanism of interaction between Tween 20-Au NPs and Hg(2+) was studied using visible spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...