Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 459: 140356, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38981384

ABSTRACT

Puffiness, a physiological disorder commonly observed during the ripening and post-harvest processes of fruits in Citrus reticulata, significantly affects the quality and shelf-life of citrus fruits. The complex array of factors contributing to puffiness has obscured the current understanding of its mechanistic basis. This study examined the puffing index (PI) of 12 citrus varieties at full ripeness, focusing on the albedo layer as a crucial tissue, and investigated the correlation between cellular structural characteristics, key primary metabolites and PI. The findings revealed that the cell gap difference and the number of lipid droplets were closely linked to PI. Chlorogenic acid, Ferulic acid, D-Galacturonic acid, D-Glucuronic acid, (9Z,11E)-Octadecadienoic acid, and 9(10)-EpOME were identified as pivotal primary metabolites for rind puffing. Determination of lignin, protopectin, cellulose and lipoxygenase content further validated the relationship between cell wall, lipid metabolism and rind puffing. This study furnishes novel insights into the mechanisms underlying puffing disorder.

2.
Front Nutr ; 10: 1103041, 2023.
Article in English | MEDLINE | ID: mdl-36761227

ABSTRACT

Citrus is widely grown all over the world, and citrus fruits have long been recognized for their nutritional and medical value for human health. However, some local citrus varieties with potentially important value are still elusive. In the current study, we elucidated the biological characteristics, phylogenetic and phytochemical profiling, antioxidants and antioxidant activities of the two local citrus varieties, namely Zangju and Tuju. The physiological and phylogenetic analysis showed that Zangju fruit has the characteristics of wrinkled skin, higher acidity, and phylogenetically closest to sour mandarin Citrus sunki, whereas, Tuju is a kind of red orange with vermilion peel, small fruit and high sugar content, and closely clustered with Citrus erythrosa. The phytochemical analysis showed that many nutrition and antioxidant related differentially accumulated metabolites (DAMs) were detected in the peel and pulp of Zangju and Tuju fruits. Furthermore, it was found that the relative abundance of some key flavonoids and phenolic acids, such as tangeritin, sinensetin, diosmetin, nobiletin, and sinapic acid in the peel and pulp of Zangju and Tuju were higher than that in sour range Daidai and satsuma mandarin. Additionally, Zangju pulp and Tuju peel showed the strongest ferric reducing/antioxidant power (FRAP) activity, whereas, Tuju peel and pulp showed the strongest DPPH and ABTS free radical scavenging activities, respectively. Moreover, both the antioxidant activities of peel and pulp were significantly correlated with the contents of total phenols, total flavonoids or ascorbic acid. These results indicate that the two local citrus varieties have certain nutritional and medicinal value and potential beneficial effects on human health. Our findings will also provide an important theoretical basis for further conservation, development and medicinal utilization of Zangju and Tuju.

3.
BMC Plant Biol ; 19(1): 582, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31878871

ABSTRACT

BACKGROUND: Chimeras synthesized artificially by grafting are crucial to the breeding of perennial woody plants. 'Hongrou Huyou' (Citrus changshan-huyou + Citrus unshiu) is a new graft chimera originating from the junction where a Citrus changshan-huyou ("C") scion was top-grafted onto a stock Satsuma mandarin 'Owari' (C. unshiu, "O"). The chimera was named OCC because the cell layer constitutions were O for Layer 1(L1) and C for L2 and L3. In this study, profiles of primary metabolites, volatiles and carotenoids derived from different tissues in OCC and the two donors were investigated, with the aim of determining the relationship between the layer donors and metabolites. RESULTS: The comparison of the metabolite profiles showed that the amount and composition of metabolites were different between the peels and the juice sacs, as well as between OCC and each of the two donors. The absence or presence of specific metabolites (such as the carotenoids violaxanthin and ß-cryptoxanthin, the volatile hydrocarbon germacrene D, and the primary metabolites citric acid and sorbose) in each tissue was identified in the three phenotypes. According to principal component analysis (PCA), overall, the metabolites in the peel of the chimera were derived from donor C, whereas those in the juice sac of the chimera came from donor O. CONCLUSION: The profiles of primary metabolites, volatiles and carotenoids derived from the peels and juice sacs of OCC and the two donors were systematically compared. The content and composition of metabolites were different between the tissues and between OCC and the each of the two donors. A clear donor dominant pattern of metabolite inheritance was observed in the different tissues of OCC and was basically consistent with the layer origin; the peel of the chimera was derived from C, and the juice sacs of the chimera came from O. These profiles provide potential chemical markers for genotype differentiation, citrus breeding assessment, and donor selection during artificial chimera synthesis.


Subject(s)
Chimera/metabolism , Citrus/metabolism , Metabolome , Chimera/genetics , Citrus/genetics
4.
Int J Mol Sci ; 20(21)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652763

ABSTRACT

Worldwide, citrus is one of the most important fruit crops and is grown in more than 130 countries, predominantly in tropical and subtropical areas. The healthy progress of the citrus industry has been seriously affected by biotic and abiotic stresses. Several diseases, such as canker and huanglongbing, etc., rigorously affect citrus plant growth, fruit quality, and yield. Genetic engineering technologies, such as genetic transformation and genome editing, represent successful and attractive approaches for developing disease-resistant crops. These genetic engineering technologies have been widely used to develop citrus disease-resistant varieties against canker, huanglongbing, and many other fungal and viral diseases. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based systems have made genome editing an indispensable genetic manipulation tool that has been applied to many crops, including citrus. The improved CRISPR systems, such as CRISPR/CRISPR-associated protein (Cas)9 and CRISPR/Cpf1 systems, can provide a promising new corridor for generating citrus varieties that are resistant to different pathogens. The advances in biotechnological tools and the complete genome sequence of several citrus species will undoubtedly improve the breeding for citrus disease resistance with a much greater degree of precision. Here, we attempt to summarize the recent successful progress that has been achieved in the effective application of genetic engineering and genome editing technologies to obtain citrus disease-resistant (bacterial, fungal, and virus) crops. Furthermore, we also discuss the opportunities and challenges of genetic engineering and genome editing technologies for citrus disease resistance.


Subject(s)
Citrus/genetics , Disease Resistance , Genetic Engineering/methods , Plant Breeding/methods , CRISPR-Cas Systems , Citrus/microbiology , Citrus/virology , Gene Editing/methods
5.
BMC Genet ; 19(1): 106, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30458706

ABSTRACT

BACKGROUND: Bud mutation is a vital method of citrus. 'Wuzi Ougan' (mutant type, MT) as a bud variant of 'Ougan' (wild type, WT) was first found in 1996 and has become popular because of its male sterility and seedless character. Previous analysis of its cytological sections and transcriptome revealed that the abnormal microsporogenesis that occurs before the tetrad stage of anther development might be the result of down-regulated oxidation-reduction biological processes in MT. To reveal the mechanism behind the male sterility in MT at the post-transcriptional stage, proteome profiling and integrative analysis on previously obtained transcriptome and proteome data were performed in two strains. RESULTS: The proteome profiling was performed by iTRAQ (isobaric Tags for relative and absolute quantitation) analysis and 6201 high-confidence proteins were identified, among which there were 487 differentially expressed proteins (DEPs) in one or more developmental stages of anthers between MT and WT. The main functional subcategories associated with the main category biological process into which the DEPs were classified were sporopollenin biosynthesis process and pollen exine formation. The enriched pathways were phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism. Moreover, there were eight pathways linked in terms of being related to phenylpropanoid metabolism. Eighteen important genes related to phenylpropanoid metabolism were also analysized by qRT-PCR (quantitative real time PCR). An integrative analysis of the fold change at the transcript (log2 FPKM ratios) and protein (log1.2 iTRAQ ratios) levels was performed to reveal the consistency of gene expression at transcriptional and proteomic level. In general, the expression of genes and proteins tended to be positively correlated, in which the correlation coefficients were 0.3414 (all genes and all proteins) and 0.5686 (DEPs and according genes). CONCLUSION: This study is the first to offer a comprehensive understanding of the gene regulation in 'Wuzi Ougan' and its wild type, especially during the microsporocyte to meiosis stage. Specifically, the involved genes include those in phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine metabolism, as determined by integrative transcriptome and proteome analysis.


Subject(s)
Citrus/metabolism , Plants, Genetically Modified/metabolism , Proteome/analysis , Proteomics , Transcriptome , Chromatography, High Pressure Liquid , Citrus/genetics , Cluster Analysis , Gene Expression Regulation, Plant , Gene Ontology , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...