Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 303(5659): 808-13, 2004 Feb 06.
Article in English | MEDLINE | ID: mdl-14764870

ABSTRACT

A genetic interaction network containing approximately 1000 genes and approximately 4000 interactions was mapped by crossing mutations in 132 different query genes into a set of approximately 4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.


Subject(s)
Genes, Fungal , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Computational Biology , Cystic Fibrosis/genetics , Gene Deletion , Genes, Essential , Genetic Diseases, Inborn/genetics , Genotype , Humans , Molecular Sequence Data , Multifactorial Inheritance , Mutation , Phenotype , Polymorphism, Genetic , Retinitis Pigmentosa/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
2.
Antimicrob Agents Chemother ; 46(4): 1080-5, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11897593

ABSTRACT

The oxazolidinones are a novel class of antimicrobial agents that target protein synthesis in a wide spectrum of gram-positive and anaerobic bacteria. The oxazolidinone PNU-100766 (linezolid) inhibits the binding of fMet-tRNA to 70S ribosomes. Mutations to oxazolidinone resistance in Halobacterium halobium, Staphylococcus aureus, and Escherichia coli map at or near domain V of the 23S rRNA, suggesting that the oxazolidinones may target the peptidyl transferase region responsible for binding fMet-tRNA. This study demonstrates that the potency of oxazolidinones corresponds to increased inhibition of fMet-tRNA binding. The inhibition of fMet-tRNA binding is competitive with respect to the fMet-tRNA concentration, suggesting that the P site is affected. The fMet-tRNA reacts with puromycin to form peptide bonds in the presence of elongation factor P (EF-P), which is needed for optimum specificity and efficiency of peptide bond synthesis. Oxazolidinone inhibition of the P site was evaluated by first binding fMet-tRNA to the A site, followed by translocation to the P site with EF-G. All three of the oxazolidinones used in this study inhibited translocation of fMet-tRNA. We propose that the oxazolidinones target the ribosomal P site and pleiotropically affect fMet-tRNA binding, EF-P stimulated synthesis of peptide bonds, and, most markedly, EF-G-mediated translocation of fMet-tRNA into the P site.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Oxazoles/pharmacology , Peptide Elongation Factors/drug effects , Ribosomes/drug effects , Acetamides/pharmacology , Bacterial Proteins/biosynthesis , Bacterial Translocation/genetics , Escherichia coli/ultrastructure , Kinetics , Linezolid , Oxazolidinones/pharmacology , Peptide Chain Initiation, Translational/drug effects , Peptide Elongation Factor G/genetics , Peptide Elongation Factors/genetics , Peptidyl Transferases/chemistry , Protein Biosynthesis/genetics , RNA, Transfer, Met/drug effects , Ribosomes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...