Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 33: 2908-2923, 2024.
Article in English | MEDLINE | ID: mdl-38607702

ABSTRACT

With recent deep learning based approaches showing promising results in removing noise from images, the best denoising performance has been reported in a supervised learning setup that requires a large set of paired noisy images and ground truth data for training. The strong data requirement can be mitigated by unsupervised learning techniques, however, accurate modelling of images or noise variances is still crucial for high-quality solutions. The learning problem is ill-posed for unknown noise distributions. This paper investigates the tasks of image denoising and noise variance estimation in a single, joint learning framework. To address the ill-posedness of the problem, we present deep variation prior (DVP), which states that the variation of a properly learnt denoiser with respect to the change of noise satisfies some smoothness properties, as a key criterion for good denoisers. Building upon DVP and under the assumption that the noise is zero mean and pixel-wise independent conditioned on the image, an unsupervised deep learning framework, that simultaneously learns a denoiser and estimates noise variances, is developed. Our method does not require any clean training images or an external step of noise estimation, and instead, approximates the minimum mean squared error denoisers using only a set of noisy images. With the two underlying tasks being considered in a single framework, we allow them to be optimised for each other. The experimental results show a denoising quality comparable to that of supervised learning and accurate noise variance estimates.

2.
IEEE Trans Image Process ; 31: 1805-1815, 2022.
Article in English | MEDLINE | ID: mdl-35113787

ABSTRACT

Semantic segmentation has been widely investigated in the community, in which state-of-the-art techniques are based on supervised models. Those models have reported unprecedented performance at the cost of requiring a large set of high quality segmentation masks for training. Obtaining such annotations is highly expensive and time consuming, in particular, in semantic segmentation where pixel-level annotations are required. In this work, we address this problem by proposing a holistic solution framed as a self-training framework for semi-supervised semantic segmentation. The key idea of our technique is the extraction of the pseudo-mask information on unlabelled data whilst enforcing segmentation consistency in a multi-task fashion. We achieve this through a three-stage solution. Firstly, a segmentation network is trained using the labelled data only and rough pseudo-masks are generated for all images. Secondly, we decrease the uncertainty of the pseudo-mask by using a multi-task model that enforces consistency and that exploits the rich statistical information of the data. Finally, the segmentation model is trained by taking into account the information of the higher quality pseudo-masks. We compare our approach against existing semi-supervised semantic segmentation methods and demonstrate state-of-the-art performance with extensive experiments.

3.
IEEE Trans Pattern Anal Mach Intell ; 44(9): 5796-5812, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33819148

ABSTRACT

Deep neural network based methods are the state of the art in various image restoration problems. Standard supervised learning frameworks require a set of noisy measurement and clean image pairs for which a distance between the output of the restoration model and the ground truth, clean images is minimized. The ground truth images, however, are often unavailable or very expensive to acquire in real-world applications. We circumvent this problem by proposing a class of structured denoisers that can be decomposed as the sum of a nonlinear image-dependent mapping, a linear noise-dependent term and a small residual term. We show that these denoisers can be trained with only noisy images under the condition that the noise has zero mean and known variance. The exact distribution of the noise, however, is not assumed to be known. We show the superiority of our approach for image denoising, and demonstrate its extension to solving other restoration problems such as image deblurring where the ground truth is not available. Our method outperforms some recent unsupervised and self-supervised deep denoising models that do not require clean images for their training. For deblurring problems, the method, using only one noisy and blurry observation per image, reaches a quality not far away from its fully supervised counterparts on a benchmark dataset.

4.
IEEE Trans Image Process ; 30: 3555-3567, 2021.
Article in English | MEDLINE | ID: mdl-33667164

ABSTRACT

Fully supervised deep neural networks for segmentation usually require a massive amount of pixel-level labels which are manually expensive to create. In this work, we develop a multi-task learning method to relax this constraint. We regard the segmentation problem as a sequence of approximation subproblems that are recursively defined and in increasing levels of approximation accuracy. The subproblems are handled by a framework that consists of 1) a segmentation task that learns from pixel-level ground truth segmentation masks of a small fraction of the images, 2) a recursive approximation task that conducts partial object regions learning and data-driven mask evolution starting from partial masks of each object instance, and 3) other problem oriented auxiliary tasks that are trained with sparse annotations and promote the learning of dedicated features. Most training images are only labeled by (rough) partial masks, which do not contain exact object boundaries, rather than by their full segmentation masks. During the training phase, the approximation task learns the statistics of these partial masks, and the partial regions are recursively increased towards object boundaries aided by the learned information from the segmentation task in a fully data-driven fashion. The network is trained on an extremely small amount of precisely segmented images and a large set of coarse labels. Annotations can thus be obtained in a cheap way. We demonstrate the efficiency of our approach in three applications with microscopy images and ultrasound images.

SELECTION OF CITATIONS
SEARCH DETAIL
...