Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(42): 47765-47774, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36251743

ABSTRACT

High quality of hydrogen is the key to the long lifetime of proton-exchange membrane fuel cell (PEMFC) vehicles, while trace H2S impurities in hydrogen significantly affect their durability and fuel expense. Herein, we demonstrate a robust PtRu alloy catalyst with an intriguing H2S tolerance as the PEMFC anode, showing a stronger antipoisoning capability toward hydrogen oxidation reaction compared with the Pt/C anode. The PtRu/C-based single PEMFC shows approximately 14.3% loss of cell voltage after 3 h operation with 1 ppm of H2S in hydrogen, significantly lower than that of Pt/C-based PEMFCs (65%). By adopting PtRu/C as the anode, the H2S limit in hydrogen can be increased to 1.7 times that of the Pt/C anode, assuming that the PEMFC runs for 5000 h, which is conductive for the cost reduction of hydrogen purification. The three-electrode electrochemical test indicates that PtRu/C exhibits a slower adsorption kinetics toward S2- species with poisoning rates of 0.02782, 0.02982, and 0.03682 min-1 at temperatures of 25, 35, and 45 °C, respectively, all lower than those of Pt/C. X-ray absorption fine structure spectra indicate the weakened Pt-S binding for PtRu/C in comparison to Pt/C with a longer Pt-S bond length. Density functional theory calculation analyses reveal that adsorption energy of sulfur on the Pt surface was reduced for PtRu/C, showing 1-10% decrease at different Pt sites for (111), (110), and (100) planes, which is ascribed to the downshifted Pt d-band center caused by the ligand and strain effects due to the introduction of second metallic Ru. This work provides a valuable guide for the development of the H2S-tolerant catalysts for long-term application of PEMFCs.

2.
ACS Appl Mater Interfaces ; 14(6): 7768-7778, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35104117

ABSTRACT

Renewable power-derived green hydrogen distributed via natural gas networks is considered one of the viable routes to drive the decarbonization of transportation and distributed power generation, while a trace amount of sulfur impurities is one of the key factors that affect the durability and life cycle expense of proton-exchange membrane fuel cells (PEMFCs) for end users. Herein, we explore the underlying effect of sulfur resistance for Pt-based hydrogen oxidation reaction (HOR) electrocatalysts devoted to high-performance and durable PEMFCs. Two typical electrocatalysts, Pt/C with pure Pt nanoparticles (NPs) and PtCo/C with Pt3Co-alloy-core-Pt-skin NPs, were investigated to demonstrate the structure-property relation for Pt-based electrocatalysts. It was revealed that the PtCo/C demonstrated alleviated sulfur poisoning with the adsorption rate constant reduced by 21.7% compared with Pt/C, and the desorption of the adsorbed sulfur was also more favorable with Pt-S bond decomposition temperature lowered by approximately 25 °C. Characterization indicated that sulfur was predominantly adsorbed in the edge mode for PtCo/C, but in a comparable edge and bridge mode for Pt/C, which caused the strengthened Pt-S binding by the chelation effect for Pt/C. The lowered d-band center of surface Pt for PtCo/C, tuned by electron transfer from Co to Pt and Pt lattice strain, was also found responsible for the weakened Pt-S interaction. The recovery test based on electro-oxidation suggested that PtCo/C also outperformed Pt/C with faster and more thorough release of HOR active sites. The SO42- species derived from electro-oxidation of S2- was more apt to adsorb on Pt/C than PtCo/C because of its stronger affinity to SO42- caused by the higher d-band center of Pt. Therefore, it is clarified that adequate modification of the Pt d-band center, for example, negatively tuned for the state-of-the-art Pt/C, is crucial to improve the sulfur resistance and recovery capability for Pt-based electrocatalysts while reserving comparable HOR activity. In particular, the investigated PtCo/C electrocatalyst is a better choice over Pt/C for more durable PEMFC anodes.

3.
ACS Appl Mater Interfaces ; 14(4): 5287-5297, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35072443

ABSTRACT

Hydrogen fuel cells are regarded as a promising new carbon mitigation strategy to realize carbon neutrality. The exploitation of robust and efficient cathode catalysts is thus vital to the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, we demonstrate a facile and scalable surface engineering route to achieve superior durability and high activity of a Pt-based material as a PEMFC cathode catalyst through a controllable liquid-phase reduction approach. The proposed surface engineering strategy by modifying Pt/C reduces the oxygen content on the carbon support and also decreases the surface defects on Pt nanoparticles (NPs), which effectively alleviate the corrosion of carbon and inhibit the detachment, agglomeration, and growth of Pt NPs. The resulting catalyst exhibits superior durability after a 10,000 potential cycling test in an acid electrolyte─outperforming commercial Pt/C. Moreover, the catalyst also demonstrates an improved oxygen reduction reaction (ORR) activity in comparison to commercial Pt/C by virtue of the high content of metallic Pt and the weakened Pt-OH bonding that releases more Pt active sites for ORR catalysis. Most importantly, the developed catalyst shows outstanding PEMFC performance and excellent long-term durability over 50 h of a constant-current test and 100 h of a load-cycling operation. This effective route provides a new avenue for exploiting robust Pt-based catalysts with superior activity in practical applications of PEMFCs.

4.
Nanotechnology ; 33(14)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34823231

ABSTRACT

The poor electronic conductivity and low intrinsic electrocatalytic activity of metal organic frameworks (MOFs) greatly limit their direct application in electrocatalytic reactions. Herein, we report a conductive two-dimensionalπ-dconjugated Ni and Co bimetal organic framework (MOF)-NiCo-(2,3,6,7,10,11-hexaiminotriphenylene) (NiCo-HITP) nanorods decorated with highly dispersed Co3O4nanoparticles (NPs) as a promising bi-functional electrocatalyst towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) through an effective and facile strategy by modifying the rod-shaped -Ni3HITP2crystals using cobalt ions. The triggered electrocatalytic activity of the resulting MOF-based materials was achieved by increasing the electrical conductivity (7.23 S cm-1) originated from Ni3HITP2substrate and also by creating the cooperative catalysis sites of Co-Nxand Co3O4NPs. Optimized syntheses show a promising ORR activity with a high half-wave potential (0.77 V) and also a significantly improved OER activity compared with pure Ni3HITP2in alkaline electrolyte. Furthermore, a rechargeable Zn-air battery using the as-prepared material as air-cathode also shows a high power density (143.1 mW cm-2)-even comparable to a commercial Pt/C-RuO2-based battery. This methodology offers a new prospect in the design and synthesis of non-carbonized MOF bi-functional electrocatalysts for efficient catalysis towards ORR and OER.

SELECTION OF CITATIONS
SEARCH DETAIL
...