Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(41): e2302979, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37378645

ABSTRACT

The application of high-entropy oxide (HEO) has attracted significant attention in recent years owing to their unique structural characteristics, such as excellent electrochemical properties and long-term cycling stability. However, the application of resistive random-access memory (RRAM) has not been extensively studied, and the switching mechanism of HEO-based RRAM has yet to be thoroughly investigated. In this study, HEO (Cr, Mn, Fe, Co, Ni)3 O4 with a spinel structure is epitaxially grown on a Nb:STO conductive substrate, and Pt metal is deposited as the top electrode. After the resistive-switching operation, some regions of the spinel structure are transformed into a rock-salt structure and analyzed using advanced transmission electron microscopy and scanning transmission electron microscopy. From the results of X-ray photoelectron spectroscopy and electron energy loss spectroscopy, only specific elements would change their valence state, which results in excellent resistive-switching properties with a high on/off ratio on the order of 105 , outstanding endurance (>4550 cycles), long retention time (>104 s), and high stability, which suggests that HEO is a promising RRAM material.

SELECTION OF CITATIONS
SEARCH DETAIL
...