Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 35(4): 496-503, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24632845

ABSTRACT

AIM: Daidzein (4',7-dihydroxyisoflavone) is an isoflavone exiting in many herbs that has shown anti-inflammation activity. The aim of this study was to investigate the mechanism underlying its anti-inflammatory action in murine lung epithelial cells. METHODS: C57BL/6 mice were intranasally exposed to TNF-α to induce lung inflammation. The mice were injected with daidzein (400 mg/kg, ip) before TNF-α challenge, and sacrificed 12 h after TNF-α challenge, and lung tissues were collected for analyisis. In in vitro studies, murine MLE-12 epithelial cells were treated with TNF-α (20 ng/mL). The expression of pro-inflammatory chemokine Cxcl2 mRNA and NF-κB transcriptional activity were examined using real-time PCR and a dual reporter assay. Protein poly-adenosine diphosphate-ribosylation (PARylation) was detecyed using Western blotting and immunoprecipitation assays. RESULTS: Pretreatment of the mice with daidzein markedly attenuated TNF-α-induced lung inflammation, and inhibited Cxcl2 expression in lung tissues. Furthermore, daidzein (10 µmol/L) prevented TNF-α-induced increases in Cxcl2 expression and activity and NF-κB transcriptional activity, and markedly inhibited TNF-α-induced protein PARylation in MLE-12 cells in vitro. In MLE-12 cells co-transfected with the PARP-1 expression plasmid and NF-κB-luc (or Cxcl2-luc) reporter plasmid, TNF-α markedly increased NF-κB (or Cxcl2) activation, which were significantly attenuated in the presence of daidzein (or the protein PARylation inhibitor PJ 34). PARP-1 activity assay showed that daidzein (10 µmol/L) reduced the activity of PARP-1 by ∼75%. CONCLUSION: The anti-inflammatory action of daidzein in murine lung epithelial cells seems to be mediated via a direct interaction with PARP-1, which inhibits RelA/p65 protein PARylation required for the transcriptional modulation of pro-inflammatory chemokines such as Cxcl2.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chemokine CXCL2/metabolism , Epithelial Cells/drug effects , Isoflavones/pharmacology , Lung/drug effects , Pneumonia/prevention & control , Poly(ADP-ribose) Polymerases/metabolism , Transcription, Genetic/drug effects , Tumor Necrosis Factor-alpha , Animals , Cell Line , Chemokine CXCL2/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Down-Regulation , Enzyme Inhibitors/pharmacology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Genes, Reporter , Lung/immunology , Lung/metabolism , Male , Mice, Inbred C57BL , Pneumonia/chemically induced , Pneumonia/immunology , Pneumonia/metabolism , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Time Factors , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...