Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Muscle Res Cell Motil ; 44(4): 311-323, 2023 12.
Article in English | MEDLINE | ID: mdl-37889396

ABSTRACT

This study aimed to explore the occurrence of necroptosis in skeletal muscle after eccentric exercise and investigate the role and possible mechanisms of ZBP1 and its related pathway proteins in the process, providing a theoretical basis for the study of exercise-induced skeletal muscle injury and recovery. Forty-eight male adult Sprague-Dawley rats were randomly divided into a control group (C, n = 8) and an exercise group (E, n = 40). The exercise group was further divided into 0 h (E0), 12 h (E12), 24 h (E24), 48 h (E48), and 72 h (E72) after exercise, with 8 rats in each subgroup. At each time point, gastrocnemius muscle was collected under general anesthesia. The expression levels of ZBP1 and its related pathway proteins were assessed using Western blot analysis. The colocalization of pathway proteins was examined using immunofluorescence staining. After 48 h of eccentric exercise, the expression of necroptosis marker protein MLKL reached its peak (P < 0.01), and the protein levels of ZBP1, RIPK3, and HMGB1 also peaked (P < 0.01). At 48 h post high-load eccentric exercise, there was a significant increase in colocalization of ZBP1/RIPK3 pathway proteins, reaching a peak (P < 0.01). (1) Eccentric exercise induced necroptosis in skeletal muscle, with MLKL, p-MLKLS358, and HMGB1 significantly elevated, especially at 48 h after exercise. (2) After eccentric exercise, the ZBP1/RIPK3-related pathway proteins ZBP1, RIPK3, and p-RIPK3S232 were significantly elevated, particularly at 48 h after exercise. (3) Following high-load eccentric exercise, there was a significant increase in the colocalization of ZBP1/RIPK3 pathway proteins, with a particularly pronounced elevation observed at 48 h post-exercise.


Subject(s)
HMGB1 Protein , Protein Kinases , Animals , Male , Rats , Muscle, Skeletal/metabolism , Necroptosis , Protein Kinases/metabolism , Rats, Sprague-Dawley
2.
J Muscle Res Cell Motil ; 43(4): 185-193, 2022 12.
Article in English | MEDLINE | ID: mdl-36350502

ABSTRACT

To observe whether downhill running can lead to DNA damage in skeletal muscle cells and changes in mitochondrial membrane permeability and to explore whether the DNA damage caused by downhill running can lead to changes in mitochondrial membrane permeability by regulating the components of the endoplasmic reticulum mitochondrial coupling structure (MAM). A total of 48 male adult Sprague-Dawley rats were randomly divided into a control group (C, n = 8) and a motor group (E, n = 40). Rats in Group E were further divided into 0 h (E0), 12 h (E12), 24 h (E24), 48 h (E48) and 72 h (E72) after prescribed exercise, with 8 rats in each group. At each time point, flounder muscle was collected under general anaesthesia. The DNA oxidative damage marker 8-hydroxydeoxyguanosine (8-OHdG) was detected by immunofluorescence. The expression levels of the DNA damage-related protein p53 in the nucleus and the EI24 protein and reep1 protein in whole cells were detected by Western blot. The colocalization coefficients of the endoplasmic reticulum protein EI24 and the mitochondrial protein Vdac2 were determined by immunofluorescence double staining, and the concentration of Ca2+ in skeletal muscle mitochondria was detected by a fluorescent probe. Finally, the opening of the mitochondrial membrane permeability transition pore (mPTP) was detected by immunofluorescence. Twelve hours after downhill running, the mitochondrial membrane permeability of the mPTP opened the most (P < 0.05), the content of 8-OHdG in skeletal muscle peaked (P < 0.05), and the levels of the regulatory protein p53, mitochondrial Ca2+, and the EI24 and reep1 proteins peaked (P < 0.01). Moreover, the colocalization coefficients of EI24 and Vdac2 and the Mandes coefficients of the two proteins increased first and then recovered 72 h after exercise (P < 0.05). (1) Downhill running can lead to DNA damage in skeletal muscle cells, overload of mitochondrial Ca2+ and large opening of membrane permeability transformation pores. (2) The DNA damage caused by downhill running may result in p53 promoting the transcriptional activation of reep1 and EI24, enhancing the interaction between EI24 and Vdac2, and then leading to an increase in Ca2+ in skeletal muscle mitochondria and the opening of membrane permeability transition pores.


Subject(s)
Mitochondrial Membranes , Running , Animals , Male , Rats , DNA Damage , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Permeability Transition Pore , Permeability , Rats, Sprague-Dawley , Running/physiology , Tumor Suppressor Protein p53/metabolism
3.
Med Sci Sports Exerc ; 53(12): 2477-2484, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34115728

ABSTRACT

PURPOSE: This study was designed to probe the effect of downhill running on microtubule acetylation and autophagic flux in rat skeletal muscle. METHODS: Sprague-Dawley rats were subjected to an exercise protocol of a 90-min downhill run with a slope of -16° and a speed of 16 m·min-1, and then the soleus was sampled at 0, 12, 24, 48, and 72 h after exercise. Protein expression levels of microtubule-associated protein 1 light chain 3 (LC3), p62/sequestosome 1 (p62), α-tubulin, and acetylated α-tubulin (AcK40 α-tubulin) were detected by Western blotting. Alpha-tubulin was costained with AcK40 α-tubulin or cytoplasmic dynein intermediate chain in a single muscle fiber, and LC3 was costained with lysosomal-associated membrane protein 1 in cryosections. To assess autophagic flux in vivo, colchicine or vehicle was injected intraperitoneally 3 d before the exercise experiment, and the protein levels of LC3 and p62 were measured by Western blotting. RESULTS: Downhill running induced a significant increase in the protein levels of LC3-II and p62, whereas the level and proportion of AcK40 α-tubulin were markedly decreased. Furthermore, the amount of dynein on α-tubulin was decreased after downhill running, and autophagosomes accumulated in the middle of myofibrils. Importantly, LC3-II flux was decreased after downhill running compared with that in the control group. CONCLUSIONS: A bout of downhill running decreases microtubule acetylation, which may impair dynein recruitment and autophagosome transportation, causing blocked autophagic flux.


Subject(s)
Autophagosomes/metabolism , Muscle, Skeletal/metabolism , Running/physiology , Tubulin/metabolism , Acetylation , Animals , Microtubule-Associated Proteins , Physical Conditioning, Animal , Rats , Rats, Sprague-Dawley
4.
ISA Trans ; 102: 221-229, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32178841

ABSTRACT

Highly efficient estimation of the phase noise is important for system optimization and signal processing in frequency modulated continuous wave system. Although many contributions investigate different technologies, almost all of them consider the input signal as a single-source signal without the leakage signal propagating from transmitter to receiver. In this paper, utilizing the signals correlation, we aim to estimate the phase noise when considering the leakage signal. For the correlation computation, the method combining the information geometry theory is proposed to avoid the complex determination of optimal lag in traditional approach. Differently, the statistical characteristics of signals are just the primary concerns. The results verify the excellent performance of our method. The mean estimated error reduces by 15.5% and the efficiency improves by 58.6%.

SELECTION OF CITATIONS
SEARCH DETAIL
...