Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 434: 115799, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34798142

ABSTRACT

Arsenic is a naturally occurring element present in food, soil and water and human exposure is associated with increased cancer risk. Arsenic inhibits DNA repair at low, non-cytotoxic concentrations and amplifies the mutagenic and carcinogenic impact of other DNA-damaging agents, such as ultraviolet radiation (UVR). Arsenic exposure leads to oxidation of zinc coordinating cysteine residues, zinc loss and decreased activity of the DNA repair protein poly(ADP)ribose polymerase (PARP)-1. Because arsenic stimulates NADPH oxidase (NOX) activity leading to generation of reactive oxygen species (ROS), the goal of this study was to investigate the role of NOX in arsenic-induced inhibition of PARP activity and retention of DNA damage. NOX involvement in the arsenic response was assessed in vitro and in vivo. Keratinocytes were treated with or without arsenite, solar-simulated UVR, NOX inhibitors and/or isoform specific NOX siRNA. Knockdown or inhibition of NOX decreased arsenite-induced ROS, PARP-1 oxidation and DNA damage retention, while restoring arsenite inhibition of PARP-1 activity. The NOX2 isoform was determined to be the major contributor to arsenite-induced ROS generation and DNA damage retention. In vivo DNA damage was measured by immunohistochemical staining and analysis of dorsal epidermis sections from C57BI/6 and p91phox knockout (NOX2-/-) mice. There was no significant difference in solar-simulated UVR DNA damage as detected by percent PH2AX positive cells within NOX2-/- mice versus control. In contrast, arsenite-dependent retention of UVR-induced DNA damage was markedly reduced. Altogether, the in vitro and in vivo findings indicate that NOX is involved in arsenic enhancement of UVR-induced DNA damage.


Subject(s)
Arsenic/toxicity , DNA Damage/drug effects , DNA Damage/radiation effects , Gene Expression Regulation, Enzymologic/drug effects , NADPH Oxidase 2/metabolism , Ultraviolet Rays , Animals , Cell Line , Humans , Keratinocytes/drug effects , Keratinocytes/radiation effects , Mice , Mice, Knockout , NADPH Oxidase 1/genetics , NADPH Oxidase 1/metabolism , NADPH Oxidase 2/genetics , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...