Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immunopharmacol Immunotoxicol ; 46(3): 319-329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38466121

ABSTRACT

OBJECTIVE: Isorhamnetin (IH) has been reported to have significant anti-inflammatory effects in various diseases, but its role and mechanism in AKI remain unclear. This study aimed to explore the potential role and mechanism of isorhamnetin in inhibiting macrophage related inflammation and improving AKI injury. METHODS: We established an AKI mouse model by intraperitoneal injection of cisplatin in vivo, and constructed an inflammatory cell model by stimulating RAW264.7 cells with LPS. Creatinine and urea nitrogen were measured to evaluate the changes of renal function in AKI mice. The changes of renal pathological structure were observed by H&E staining. The inflammatory factor-related proteins and RNA expression levels were detected by Western blot and real time PCR. RESULTS: Isorhamnetin protected the kidney from cisplatin induced AKI and significantly inhibited the mRNA and protein levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α) both in AKI kidney and LPS-stimulated RAW264.7 cells. Interestingly, the data also demonstrated that isorhamnetin significantly upregulated the expression of secretory leukocyte peptidase inhibitor (SLPI), an anti-inflammatory factor, in AKI kidney and LPS-stimulated macrophages, as well as inhibited the M1 macrophage and activated M2 macrophage in vitro. Blocking of SLPI by siRNA activated Mincle-associated inflammatory signaling in macrophages, and the inhibitory effect of isorhamnetin on inflammation was significantly attenuated. CONCLUSION: Isorhamnetin inhibits macrophage inflammation and protects kidney in AKI may be related to downregulating Mincle/Syk/NF-κB-maintained macrophage phenotype by activating SLPI.


Subject(s)
Acute Kidney Injury , Anti-Inflammatory Agents , Cisplatin , Macrophages , Quercetin , Animals , Quercetin/analogs & derivatives , Quercetin/pharmacology , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Mice , Cisplatin/pharmacology , Cisplatin/adverse effects , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Male , Mice, Inbred C57BL
2.
J Pharmacol Sci ; 148(1): 56-64, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34924130

ABSTRACT

Acute kidney injury (AKI) is a serious complication in critically ill patients. Accumulating evidences indicated that macrophages play an important pro-inflammatory role in AKI and isoliquiritigenin (ISL) can inhibit macrophagic inflammation, but its role in AKI and the underlying mechanism are unknown. The present study aims to investigate the renoprotective effect of ISL on AKI and the role of Formyl peptide receptors 2 (FPR2) in this process. In this study, cisplatin-induced AKI model and lipopolysaccharide-induced macrophage inflammatory model were employed to perform the in vivo and in vitro experiments. The results showed that ISL strongly relieved kidney injury and inhibited renal inflammation in vivo and suppress macrophagic inflammatory response in vitro. Importantly, it was found that FPR2 was significantly upregulated compared to the control group in AKI and LPS-induced macrophage, whereas it was strongly suppressed by ISL. Interestingly, overexpression of FPR2 with transfection of pcDNA3.1-FPR2 effectively reversed the anti-inflammatory effect of ISL in macrophage, suggesting that FPR2 may be the potential target for ISL to prevent inflammation and improve kidney injury of AKI. Take together, these findings indicated that ISL improved cisplantin-induced kidney injury by inhibiting FPR2 involved macrophagic inflammation, which may provide a potential therapeutic option for AKI.


Subject(s)
Acute Kidney Injury/genetics , Acute Kidney Injury/prevention & control , Chalcones/pharmacology , Chalcones/therapeutic use , Cisplatin/adverse effects , Macrophages/metabolism , Receptors, Formyl Peptide/antagonists & inhibitors , Receptors, Lipoxin/antagonists & inhibitors , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Animals , Cells, Cultured , Chalcones/isolation & purification , Gene Expression/drug effects , Glycyrrhiza/chemistry , Inflammation , Male , Mice, Inbred C57BL , Molecular Targeted Therapy , Phytotherapy , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/physiology , Receptors, Lipoxin/genetics , Receptors, Lipoxin/metabolism , Receptors, Lipoxin/physiology , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...