Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 26(6): e16664, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830671

ABSTRACT

Milk is a complex biochemical fluid that includes macronutrients and microbiota, which, together, are known to facilitate infant growth, mediate the colonization of infant microbiomes, and promote immune development. Examining factors that shape milk microbiomes and milk-nutrient interplay across host taxa is critical to resolving the evolution of the milk environment. Using a comparative approach across four cercopithecine primate species housed at three facilities under similar management conditions, we test for the respective influences of the local environment (housing facility) and host species on milk (a) macronutrients (fat, sugar, and protein), (b) microbiomes (16S rRNA), and (c) predicted microbial functions. We found that milk macronutrients were structured according to host species, while milk microbiomes and predicted function were strongly shaped by the local environment and, to a lesser extent, host species. The milk microbiomes of rhesus macaques (Macaca mulatta) at two different facilities more closely resembled those of heterospecific facility-mates compared to conspecifics at a different facility. We found similar, facility-driven patterns of microbial functions linked to physiology and immune modulation, suggesting that milk microbiomes may influence infant health and development. These results provide novel insight into the complexity of milk and its potential impact on infants across species and environments.


Subject(s)
Microbiota , Milk , Nutrients , RNA, Ribosomal, 16S , Animals , Milk/microbiology , Nutrients/metabolism , RNA, Ribosomal, 16S/genetics , Macaca mulatta/microbiology , Female , Cercopithecidae/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biological Evolution
2.
Proc Natl Acad Sci U S A ; 120(28): e2218900120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399384

ABSTRACT

Milk production is an ancient adaptation that unites all mammals. Milk contains a microbiome that can contribute to offspring health and microbial-immunological development. We generated a comprehensive milk microbiome dataset (16S rRNA gene) for the class Mammalia, representing 47 species from all placental superorders, to determine processes structuring milk microbiomes. We show that across Mammalia, milk exposes offspring to maternal bacterial and archaeal symbionts throughout lactation. Deterministic processes of environmental selection accounted for 20% of milk microbiome assembly processes; milk microbiomes were similar from mammals with the same host superorder (Afrotheria, Laurasiathera, Euarchontoglires, and Xenarthra: 6%), environment (marine captive, marine wild, terrestrial captive, and terrestrial wild: 6%), diet (carnivore, omnivore, herbivore, and insectivore: 5%), and milk nutrient content (sugar, fat, and protein: 3%). We found that diet directly and indirectly impacted milk microbiomes, with indirect effects being mediated by milk sugar content. Stochastic processes, such as ecological drift, accounted for 80% of milk microbiome assembly processes, which was high compared to mammalian gut and mammalian skin microbiomes (69% and 45%, respectively). Even amid high stochasticity and indirect effects, our results of direct dietary effects on milk microbiomes provide support for enteromammary trafficking, representing a mechanism by which bacteria are transferred from the mother's gut to mammary gland and then to offspring postnatally. The microbial species present in milk reflect both selective pressures and stochastic processes at the host level, exemplifying various ecological and evolutionary factors acting on milk microbiomes, which, in turn, set the stage for offspring health and development.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Female , Pregnancy , Milk , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Placenta , Microbiota/genetics , Mammals/genetics , Bacteria/genetics , Eutheria/genetics
3.
PeerJ ; 11: e15501, 2023.
Article in English | MEDLINE | ID: mdl-37312881

ABSTRACT

The gut microbiome of bees is vital for the health of their hosts. Given the ecosystem functions performed by bees, and the declines faced by many species, it is important to improve our understanding of the amount of natural variation in the gut microbiome, the level of sharing of bacteria among co-occurring species (including between native and non-native species), and how gut communities respond to infections. We conducted 16S rRNA metabarcoding to discern the level of microbiome similarity between honey bees (Apis mellifera, N = 49) and bumble bees (Bombus spp., N = 66) in a suburban-rural landscape. We identified a total of 233 amplicon sequence variants (ASVs) and found simple gut microbiomes dominated by bacterial taxa belonging to Gilliamella, Snodgrassella, and Lactobacillus. The average number of ASVs per species ranged from 4.00-15.00 (8.79 ± 3.84, mean ± SD). Amplicon sequence variant of one bacterial species, G. apicola (ASV 1), was widely shared across honey bees and bumble bees. However, we detected another ASV of G. apicola that was either exclusive to honey bees, or represented an intra-genomic 16S rRNA haplotype variant in honey bees. Other than ASV 1, honey bees and bumble bees rarely share gut bacteria, even ones likely derived from outside environments (e.g., Rhizobium spp., Fructobacillus spp.). Honey bee bacterial microbiomes exhibited higher alpha diversity but lower beta and gamma diversities than those of bumble bees, likely a result of the former possessing larger, perennial hives. Finally, we identified pathogenic or symbiotic bacteria (G. apicola, Acinetobacter sp. and Pluralibacter sp.) that associate with Trypanosome and/or Vairimorpha infections in bees. Such insights help to determine bees' susceptibility to infections should gut microbiomes become disrupted by chemical pollutants and contribute to our understanding of what constitutes a state of dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neisseriaceae , Bees , Animals , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Enterobacteriaceae
4.
Sci Rep ; 12(1): 11017, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773288

ABSTRACT

In mammalian neonates, milk consumption provides nutrients, growth factors, immune molecules, and microbes. Milk microbiomes are increasingly recognized for their roles in seeding infant gut microbiomes and priming immune development. However, milk microbiome variation within and among individuals remains under investigation. We used 16S rRNA gene sequencing to investigate factors shaping milk microbiomes in three captive great ape species: Gorilla gorilla gorilla (individuals, N = 4; samples, n = 29), Pongo abelii (N = 2; n = 16), and Pongo pygmaeus (N = 1; n = 9). We demonstrate variation among host species, over lactation, and between housing facilities. In phylogenetic community composition, milk microbiomes were distinct among the three ape species. We found only a few shared, abundant bacterial taxa and suggest that they likely serve functional roles. The diversity and community composition of milk microbiomes showed gradual changes over time in gorillas and the Bornean orangutan, which was detectable with our comprehensive sampling over lactation stages (> 300-day span). In gorillas, milk microbiomes differed between housing facilities, but were similar between dams within a facility. These results support the strong influence of evolutionary history in shaping milk microbiomes, but also indicate that more proximate cues from mother, offspring, and the environment affect the distribution of rarer microbial taxa.


Subject(s)
Hominidae , Microbiota , Animals , Female , Gorilla gorilla/genetics , Hominidae/genetics , Humans , Infant, Newborn , Mammals/genetics , Milk , Phylogeny , Pongo pygmaeus/genetics , RNA, Ribosomal, 16S/genetics
5.
Anim Microbiome ; 3(1): 85, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930501

ABSTRACT

BACKGROUND: The gut microbiome is important to immune health, metabolism, and hormone regulation. Understanding host-microbiome relationships in captive animals may lead to mediating long term health issues common in captive animals. For instance, zoo managed African elephants (Loxodonta africana) and Asian elephants (Elephas maximus) experience low reproductive rates, high body condition, and gastrointestinal (GI) issues. We leveraged an extensive collection of fecal samples and health records from the Elephant Welfare Study conducted across North American zoos in 2012 to examine the link between gut microbiota and clinical health issues, reproductive hormones, and metabolic hormones in captive elephants. We quantified gut microbiomes of 69 African and 48 Asian elephants from across 50 zoos using Illumina sequencing of the 16S rRNA bacterial gene. RESULTS: Elephant species differed in microbiome structure, with African elephants having lower bacterial richness and dissimilar bacterial composition from Asian elephants. In both species, bacterial composition was strongly influenced by zoo facility. Bacterial richness was lower in African elephants with recent GI issues, and richness was positively correlated with metabolic hormone total triiodothyronine (total T3) in Asian elephants. We found species-specific associations between gut microbiome composition and hormones: Asian elephant gut microbiome composition was linked to total T3 and free thyroxine (free T4), while fecal glucocorticoid metabolites (FGM) were linked to African elephant gut microbiome composition. We identified many relationships between bacterial relative abundances and hormone concentrations, including Prevotella spp., Treponema spp., and Akkermansia spp. CONCLUSIONS: We present a comprehensive assessment of relationships between the gut microbiome, host species, environment, clinical health issues, and the endocrine system in captive elephants. Our results highlight the combined significance of host species-specific regulation and environmental effects on the gut microbiome between two elephant species and across 50 zoo facilities. We provide evidence of clinical health issues, reproductive hormones, and metabolic hormones associated with the gut microbiome structure of captive elephants. Our findings establish the groundwork for future studies to investigate bacterial function or develop tools (e.g., prebiotics, probiotics, dietary manipulations) suitable for conservation and zoo management.

6.
Biol Reprod ; 100(6): 1549-1560, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30848798

ABSTRACT

Many zoo elephants do not cycle normally, and for African elephants, it is often associated with hyperprolactinemia. Dopamine agonists successfully treat hyperprolactinemia-induced ovarian dysfunction in women, but not elephants. The objective of this study was to determine how longitudinal dopamine, serotonin, and oxytocin patterns in African elephants are related to ovarian cycle function. We hypothesized that dopamine concentrations are decreased, while oxytocin and serotonin are increased in non-cycling, hyperprolactinemic African elephants. Weekly urine and serum samples were collected for eight consecutive months from 28 female African elephants. Females were categorized as follows: (1) non-cycling with average prolactin concentrations of 15 ng/ml or greater (HIGH; n = 7); (2) non-cycling with average prolactin concentrations below 15 ng/ml (LOW; n = 13); and (3) cycling with normal progestagen and prolactin patterns (CYCLING; n = 8). Both oxytocin and serotonin were elevated in hyperprolactinemic elephants. Thus, we propose that stimulatory factors may play a role in the observed hyperprolactinemia in this species. Interestingly, rather than being reduced as hypothesized, urinary dopamine was elevated in hyperprolactinemic elephants compared to CYCLING and LOW prolactin groups. Despite its apparent lack of regulatory control over prolactin, this new evidence suggests that dopamine synthesis and secretion are not impaired in these elephants, and perhaps are augmented.


Subject(s)
Dopamine/blood , Elephants/physiology , Estrous Cycle/physiology , Hyperprolactinemia/blood , Oxytocin/blood , Prolactin/blood , Serotonin/blood , Animal Diseases/blood , Animal Diseases/physiopathology , Animals , Animals, Zoo , Case-Control Studies , Dopamine/urine , Elephants/blood , Elephants/urine , Estrous Cycle/blood , Female , Hyperprolactinemia/physiopathology , Hyperprolactinemia/urine , Hyperprolactinemia/veterinary , Ovarian Diseases/blood , Ovarian Diseases/physiopathology , Ovarian Diseases/urine , Ovary/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...