Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS EST Air ; 1(6): 464-473, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38898934

ABSTRACT

Traditional online measurements of the chemical composition of particulate matter have relied on expensive and complex research-grade instrumentation based on mass spectrometry and/or chromatography. However, routine monitoring requires lower-cost alternatives that can be operated autonomously, and such tools are lacking. Routine monitoring of particulate matter, especially organic aerosol, relies instead on offline techniques such as filter collection that require significant operator effort. To address this gap, we present here a new online instrument, the "ChemSpot", that provides information on organic aerosol mass loading, volatility, and degree of oxygenation, along with sulfur content. The instrument grows particles with water condensation, impacts them onto a passivated surface with low heat capacity, and uses stepped thermal desorption of analytes to a combination of flame ionization detector (FID) and flame photometric detector (FPD) and then to a CO2 detector downstream of the FID/FPD setup. By relying on detectors designed for gas chromatography, calibration is achieved almost entirely through the introduction of gases without the need for regular introduction of particle-phase calibrants. Particle collection efficiency of greater than 95% was achieved consistently, and the collection cell was shown to rapidly and precisely heat to ∼800 °C at a rate as fast as 10 °C per second. Measurements of total organic carbon, volatility distribution of organic aerosol, total sulfur, and oxygen-to-carbon ratio (O:C) collected during a continuous multi-week period are presented here to demonstrate the autonomous operation of "ChemSpot". Colocated measurements with a mass spectrometer, an aerosol chemical speciation monitor (ACSM), show good correlation and relatively low bias between the instruments (mean absolute percentage error of 21% and 27% for organic carbon and equivalent sulfate measurements, respectively).

2.
Aerosol Sci Technol ; 57(4): 342-354, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37284690

ABSTRACT

We describe design and characterization of an aerosol NanoSpot™ collector, designed for collection of airborne particles on a microscopy substrate for direct electron and optical microscopy, and laser spectroscopy analysis. The collector implements a water-based, laminar-flow, condensation growth technique, followed by impaction onto an optical/electron microscopy substrate or a transmission electron microscopy grid for direct analysis. The compact design employs three parallel growth tubes allowing a sampling flow rate of 1.2 L min-1. Each growth tube consists of three-temperature regions, for controlling the vapor saturation profile and exit dew point. Following the droplet growth, the three streams merge into one flow and a converging nozzle enhances focusing of grown droplets into a tight beam, prior to their final impaction on the warm surface of the collection substrate. Experiments were conducted for the acquisition of the size-dependent collection efficiency and the aerosol concentration effect on the NanoSpot™ collector. Particles as small as 7 nm were activated and collected on the electron microscopy stub. The collected particle samples were analyzed using electron microscopy and Raman spectroscopy for the acquisition of the particle spatial distribution, the spot sample uniformity, and the analyte concentration. A spot deposit of approximately 0.7-mm diameter is formed for particles over a broad particle diameter range, for effective coupling with microscopic and spectroscopic analysis. Finally, the NanoSpot™ collector's analytical measurement sensitivity for laser Raman analysis and counting statistics for fiber count measurement using optical microscopy were calculated and were compared with those of the conventional aerosol sampling methods.

3.
J Microbiol Methods ; 157: 1-3, 2019 02.
Article in English | MEDLINE | ID: mdl-30557586

ABSTRACT

A condensation growth tube was adapted to capture bacterial bioaerosols directly into genomic preservatives. As judged by quantitative PCR and direct microscopy, bioaerosol condensation capture conserves airborne microbes' genomes as they exist in the atmospheric environment. This method circumvents the collection stresses bioaerosols experience on air filters, impactors and impingers.


Subject(s)
Aerosols , Air Microbiology , Bacillus subtilis/growth & development , Bacillus subtilis/genetics , Environmental Monitoring , Filtration/instrumentation , Filtration/methods
4.
Environ Sci Technol ; 49(5): 2675-84, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25643125

ABSTRACT

Flood-damaged homes typically have elevated microbial loads, and their occupants have an increased incidence of allergies, asthma, and other respiratory ailments, yet the microbial communities in these homes remain under-studied. Using culture-independent approaches, we characterized bacterial and fungal communities in homes in Boulder, CO, USA 2-3 months after the historic September, 2013 flooding event. We collected passive air samples from basements in 50 homes (36 flood-damaged, 14 non-flooded), and we sequenced the bacterial 16S rRNA gene (V4-V5 region) and the fungal ITS1 region from these samples for community analyses. Quantitative PCR was used to estimate the abundances of bacteria and fungi in the passive air samples. Results indicate significant differences in bacterial and fungal community composition between flooded and non-flooded homes. Fungal abundances were estimated to be three times higher in flooded, relative to non-flooded homes, but there were no significant differences in bacterial abundances. Penicillium (fungi) and Pseudomonadaceae and Enterobacteriaceae (bacteria) were among the most abundant taxa in flooded homes. Our results suggest that bacterial and fungal communities continue to be affected by flooding, even after relative humidity has returned to baseline levels and remediation has removed any visible evidence of flood damage.


Subject(s)
Air Microbiology , Bacteria/growth & development , Disasters , Floods , Fungi/growth & development , Bacteria/genetics , Colorado , Fungi/genetics , Humans , RNA, Bacterial/genetics , RNA, Fungal/genetics , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...