Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 124(26): 5389-5401, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32491870

ABSTRACT

OCS binding to and reactivity with isolated gold cluster cations, Aun+ (n = 1-10), has been studied by infrared multiple photon dissociation (IR-MPD) spectroscopy in conjunction with quantum chemical calculations. The distribution of complexes AunSx(OCS)m+ formed reflects the relative reactivity of different cluster sizes with OCS, under the multiple collision conditions of our ablation source. The IR-MPD spectra of Aun(OCS)+ (n = 3-10) clusters are interpreted in terms of either µ1 or µ2 S binding motifs. Analysis of the fragmentation products following infrared excitation of parent Aun(OCS)+ clusters reveals strongly size-selective (odd-even) branching ratios for OCS and CO loss, respectively. CO loss signifies infrared-driven OCS decomposition on the cluster surface and is observed to occur predominantly on even n clusters (i.e., those with odd electron counts). The experimental data, including fragmentation branching ratios, are consistent with calculated potential energy landscapes, in which the initial species trapped are molecularly bound entrance channel complexes, rather than global minimum inserted structures. Attempts to generate Rhn(OCS)+ and Ptn(OCS)+ equivalents failed; only sulfide reaction products were observed in the mass spectrum, even after cooling the cluster source to -100 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...