Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Cogn Neurosci ; 36(7): 1427-1471, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38683732

ABSTRACT

Human language is expressive because it is compositional: The meaning of a sentence (semantics) can be inferred from its structure (syntax). It is commonly believed that language syntax and semantics are processed by distinct brain regions. Here, we revisit this claim using precision fMRI methods to capture separation or overlap of function in the brains of individual participants. Contrary to prior claims, we find distributed sensitivity to both syntax and semantics throughout a broad frontotemporal brain network. Our results join a growing body of evidence for an integrated network for language in the human brain within which internal specialization is primarily a matter of degree rather than kind, in contrast with influential proposals that advocate distinct specialization of different brain areas for different types of linguistic functions.


Subject(s)
Brain Mapping , Brain , Magnetic Resonance Imaging , Semantics , Humans , Male , Female , Adult , Brain/physiology , Brain/diagnostic imaging , Young Adult , Language , Neural Pathways/physiology
2.
Cereb Cortex ; 33(12): 7904-7929, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37005063

ABSTRACT

Language and music are two human-unique capacities whose relationship remains debated. Some have argued for overlap in processing mechanisms, especially for structure processing. Such claims often concern the inferior frontal component of the language system located within "Broca's area." However, others have failed to find overlap. Using a robust individual-subject fMRI approach, we examined the responses of language brain regions to music stimuli, and probed the musical abilities of individuals with severe aphasia. Across 4 experiments, we obtained a clear answer: music perception does not engage the language system, and judgments about music structure are possible even in the presence of severe damage to the language network. In particular, the language regions' responses to music are generally low, often below the fixation baseline, and never exceed responses elicited by nonmusic auditory conditions, like animal sounds. Furthermore, the language regions are not sensitive to music structure: they show low responses to both intact and structure-scrambled music, and to melodies with vs. without structural violations. Finally, in line with past patient investigations, individuals with aphasia, who cannot judge sentence grammaticality, perform well on melody well-formedness judgments. Thus, the mechanisms that process structure in language do not appear to process music, including music syntax.


Subject(s)
Aphasia , Music , Humans , Broca Area , Language , Magnetic Resonance Imaging , Brain Mapping , Perception
3.
bioRxiv ; 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36711687

ABSTRACT

Human cortical responses to natural sounds, measured with fMRI, can be approximated as the weighted sum of a small number of canonical response patterns (components), each having interpretable functional and anatomical properties. Here, we asked whether this organization is preserved in cases where only one temporal lobe is available due to early brain damage by investigating a unique family: one sibling born without a left temporal lobe, another without a right temporal lobe, and a third anatomically neurotypical. We analyzed fMRI responses to diverse natural sounds within the intact hemispheres of these individuals and compared them to 12 neurotypical participants. All siblings manifested the neurotypical auditory responses in their intact hemispheres. These results suggest that the development of the auditory cortex in each hemisphere does not depend on the existence of the other hemisphere, highlighting the redundancy and equipotentiality of the bilateral auditory system.

4.
Cereb Cortex ; 33(8): 4384-4404, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36130104

ABSTRACT

A fronto-temporal brain network has long been implicated in language comprehension. However, this network's role in language production remains debated. In particular, it remains unclear whether all or only some language regions contribute to production, and which aspects of production these regions support. Across 3 functional magnetic resonance imaging experiments that rely on robust individual-subject analyses, we characterize the language network's response to high-level production demands. We report 3 novel results. First, sentence production, spoken or typed, elicits a strong response throughout the language network. Second, the language network responds to both phrase-structure building and lexical access demands, although the response to phrase-structure building is stronger and more spatially extensive, present in every language region. Finally, contra some proposals, we find no evidence of brain regions-within or outside the language network-that selectively support phrase-structure building in production relative to comprehension. Instead, all language regions respond more strongly during production than comprehension, suggesting that production incurs a greater cost for the language network. Together, these results align with the idea that language comprehension and production draw on the same knowledge representations, which are stored in a distributed manner within the language-selective network and are used to both interpret and generate linguistic utterances.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Language , Brain/physiology , Comprehension/physiology
5.
Sci Data ; 9(1): 529, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36038572

ABSTRACT

Two analytic traditions characterize fMRI language research. One relies on averaging activations across individuals. This approach has limitations: because of inter-individual variability in the locations of language areas, any given voxel/vertex in a common brain space is part of the language network in some individuals but in others, may belong to a distinct network. An alternative approach relies on identifying language areas in each individual using a functional 'localizer'. Because of its greater sensitivity, functional resolution, and interpretability, functional localization is gaining popularity, but it is not always feasible, and cannot be applied retroactively to past studies. To bridge these disjoint approaches, we created a probabilistic functional atlas using fMRI data for an extensively validated language localizer in 806 individuals. This atlas enables estimating the probability that any given location in a common space belongs to the language network, and thus can help interpret group-level activation peaks and lesion locations, or select voxels/electrodes for analysis. More meaningful comparisons of findings across studies should increase robustness and replicability in language research.


Subject(s)
Brain , Language , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Humans
6.
Neuropsychologia ; 169: 108184, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35183561

ABSTRACT

Language processing relies on a left-lateralized fronto-temporal brain network. How this network emerges ontogenetically remains debated. We asked whether frontal language areas emerge in the absence of temporal language areas through a 'deep-data' investigation of an individual (EG) born without her left temporal lobe. Using fMRI methods that have been validated to elicit reliable individual-level responses, we find that-as expected for early left-hemisphere damage-EG has a fully functional language network in her right hemisphere (comparable to the LH network in n = 145 controls) and intact linguistic abilities. However, we detect no response to language in EG's left frontal lobe (replicated across two sessions, 3 years apart). Another network-the multiple demand network-is robustly present in frontal lobes bilaterally, suggesting that EG's left frontal cortex can support non-linguistic cognition. The existence of temporal language areas therefore appears to be a prerequisite for the emergence of the frontal language areas.


Subject(s)
Brain Mapping , Language , Brain Mapping/methods , Female , Frontal Lobe/physiology , Functional Laterality/physiology , Humans , Magnetic Resonance Imaging/methods , Temporal Lobe/physiology
7.
Cogn Neuropsychol ; 39(5-8): 249-275, 2022.
Article in English | MEDLINE | ID: mdl-36653302

ABSTRACT

The visual word form area (VWFA), a region canonically located within left ventral temporal cortex (VTC), is specialized for orthography in literate adults presumbly due to its connectivity with frontotemporal language regions. But is a typical, left-lateralized language network critical for the VWFA's emergence? We investigated this question in an individual (EG) born without the left superior temporal lobe but who has normal reading ability. EG showed canonical typical face-selectivity bilateraly but no wordselectivity either in right VWFA or in the spared left VWFA. Moreover, in contrast with the idea that the VWFA is simply part of the language network, no part of EG's VTC showed selectivity to higher-level linguistic processing. Interestingly, EG's VWFA showed reliable multivariate patterns that distinguished words from other categories. These results suggest that a typical left-hemisphere language network is necessary for acanonical VWFA, and that orthographic processing can otherwise be supported by a distributed neural code.


Subject(s)
Dyslexia , Reading , Adult , Humans , Magnetic Resonance Imaging , Temporal Lobe , Language
8.
Elife ; 92020 12 15.
Article in English | MEDLINE | ID: mdl-33319744

ABSTRACT

Computer programming is a novel cognitive tool that has transformed modern society. What cognitive and neural mechanisms support this skill? Here, we used functional magnetic resonance imaging to investigate two candidate brain systems: the multiple demand (MD) system, typically recruited during math, logic, problem solving, and executive tasks, and the language system, typically recruited during linguistic processing. We examined MD and language system responses to code written in Python, a text-based programming language (Experiment 1) and in ScratchJr, a graphical programming language (Experiment 2); for both, we contrasted responses to code problems with responses to content-matched sentence problems. We found that the MD system exhibited strong bilateral responses to code in both experiments, whereas the language system responded strongly to sentence problems, but weakly or not at all to code problems. Thus, the MD system supports the use of novel cognitive tools even when the input is structurally similar to natural language.


Subject(s)
Brain/physiology , Cognition , Comprehension , Executive Function , Software , Adult , Brain/diagnostic imaging , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/physiology , Young Adult
9.
Neurobiol Lang (Camb) ; 1(1): 104-134, 2020.
Article in English | MEDLINE | ID: mdl-36794007

ABSTRACT

The frontotemporal language network responds robustly and selectively to sentences. But the features of linguistic input that drive this response and the computations that these language areas support remain debated. Two key features of sentences are typically confounded in natural linguistic input: words in sentences (a) are semantically and syntactically combinable into phrase- and clause-level meanings, and (b) occur in an order licensed by the language's grammar. Inspired by recent psycholinguistic work establishing that language processing is robust to word order violations, we hypothesized that the core linguistic computation is composition, and, thus, can take place even when the word order violates the grammatical constraints of the language. This hypothesis predicts that a linguistic string should elicit a sentence-level response in the language network provided that the words in that string can enter into dependency relationships as in typical sentences. We tested this prediction across two fMRI experiments (total N = 47) by introducing a varying number of local word swaps into naturalistic sentences, leading to progressively less syntactically well-formed strings. Critically, local dependency relationships were preserved because combinable words remained close to each other. As predicted, word order degradation did not decrease the magnitude of the blood oxygen level-dependent response in the language network, except when combinable words were so far apart that composition among nearby words was highly unlikely. This finding demonstrates that composition is robust to word order violations, and that the language regions respond as strongly as they do to naturalistic linguistic input, providing that composition can take place.

10.
Proc Natl Acad Sci U S A ; 116(1): 328-333, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30559179

ABSTRACT

As a part of social cognition, people automatically construct rich models of other people's vision. Here we show that when people judge the mechanical forces acting on an object, their judgments are biased by another person gazing at the object. The bias is consistent with an implicit perception that gaze adds a gentle force, pushing on the object. The bias was present even though the participants were not explicitly aware of it and claimed that they did not believe in an extramission view of vision (a common folk view of vision in which the eyes emit an invisible energy). A similar result was not obtained on control trials when participants saw a blindfolded face turned toward the object, or a face with open eyes turned away from the object. The findings suggest that people automatically and implicitly generate a model of other people's vision that uses the simplifying construct of beams coming out of the eyes. This implicit model of active gaze may be a hidden, yet fundamental, part of the rich process of social cognition, contributing to how we perceive visual agency. It may also help explain the extraordinary cultural persistence of the extramission myth of vision.


Subject(s)
Attention , Eye , Visual Perception , Adolescent , Adult , Aged , Eye Movements , Female , Fixation, Ocular , Humans , Male , Middle Aged , Models, Psychological , Surveys and Questionnaires , Theory of Mind , Vision, Ocular , Young Adult
11.
J Cogn Neurosci ; 28(6): 842-51, 2016 06.
Article in English | MEDLINE | ID: mdl-26836517

ABSTRACT

Previous studies show that it is possible to attend to a stimulus without awareness of it. Whether attention and awareness are independent or have a specific relationship, however, remains debated. Here, we tested three aspects of visual attention with and without awareness of the visual stimulus. Metacontrast masking rendered participants either subjectively aware or not aware of the stimulus. Attention drawn to the stimulus was measured by using the stimulus as a cue in a spatial attention task. We found that attention was drawn to the stimulus regardless of whether or not people were aware of it. However, attention changed significantly in the absence of awareness in at least three ways. First, attention to a task-relevant stimulus was less stable over time. Second, inhibition of return, the automatic suppression of attention to a task-irrelevant stimulus, was reduced. Third, attention was more driven by the luminance contrast of the stimulus. These findings add to the growing information on the behavior of attention with and without awareness. The findings are also consistent with our recently proposed account of the relationship between attention and awareness. In the attention schema theory, awareness is the internal model of attention. Just as the brain contains a body schema that models the body and helps control the body, so it contains an attention schema that helps control attention. In that theory, in the absence of awareness, the control of attention should suffer in basic ways predictable from dynamical systems theory. The present results confirm some of those predictions.


Subject(s)
Attention , Awareness , Executive Function , Visual Perception , Adolescent , Adult , Analysis of Variance , Female , Humans , Male , Middle Aged , Photic Stimulation , Psychological Tests , Psychophysics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...