Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
bioRxiv ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39026718

ABSTRACT

BACKGROUND: High-risk neuroblastoma (HR-NBL) is an aggressive tumor of the sympathetic nervous system with high risk of relapse and poor overall survival. Allogeneic hematopoietic cell transplant (allo-HCT) has been used previously in HR-NBL patients; however, graft-versus-host-disease (GVHD) and disease progression have limited clinical application. Ex-vivo stimulated allogeneic natural killer (NK) cells represent a potential approach to enhance the graft-versus-tumor (GVT) effect without exacerbation of GVHD but have not shown efficacy in NBL. METHODS: Ex-vivo stimulated NK cells from C57BL/6NCr (B6) mice were expanded with soluble IL-15/IL-15Rα alone or with irradiated CD137L/CD54+ AgN2a-4P (15-4P) at a 1:1 ratio for 10-12 days. Allogeneic NK cells were then analyzed for activation, proliferation, cytokine production, and cytotoxicity against two murine NBL cell lines, Neuro2a and NXS2, in the absence or presence of anti-TIM-3. Lethally irradiated B6AJF1 Mice received allo-HCT from B6 donors followed by NBL challenge after 7 days to mimic tumor relapse. Select groups received anti-TIM-3 starting on day 9 for every 4 days with/without infusions of 15-4P B6 NK cells on days 14, 21, and 28. In select experiments, T cell and NK cells were selectively depleted to establish their contribution to the GVT effect. All groups were analyzed for tumor growth, GVHD and overall survival. RESULTS: Co-culturing NK cells with 15-4P results in 78-fold expansion with increased expression of Ki-67 and NKG2D, NKp46, TRAIL and TIM-3. 15-4P stimulated allogeneic NK cells showed enhanced cytotoxicity against NBL compared to IL-15 NK cells alone but was limited in part due to high expression of TIM-3 ligands on Neuro-2a compared to NXS2. The addition of TIM-3 blockade further enhanced NK cytotoxicity versus Neuro-2a, with enhanced 15-4P NK cell degranulation, Eomes, TRAIL and FasL expression observed. Analysis of RNA from 15-4P NK cells exposed to TIM-3 blockade showed gene expression of chemokines, NKG2D/DAP12 signaling, non-canonical NF-κb pathway and TRAIL signaling. Blockade of NKG2D, TRAIL or FasL on 15-4P NK cells abrogated cytotoxicity. In vivo, the combination of 15-4P stimulated allogeneic NK cells and TIM-3 blockade after allo-HCT resulted in prolonged survival against NBL with decreased tumor burden compared to NK cells or anti-TIM-3 alone, without inducing GVHD. Depletion of NK cells, but not T cells, abrogated the GVT effect. CONCLUSION: Allo-HCT can be a platform for treating NBL using combination ex-vivo stimulated allogeneic NK cell therapy with TIM-3 blockade to enhance the GVT effect without inducing GVHD.

4.
Transl Oncol ; 42: 101899, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320395

ABSTRACT

BACKGROUND: Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) remains a treatment-resistance disease with limited response to immunotherapy. While T cells in HNSCC are known to display phenotypic dysfunction, whether they retain rescuable functional capacity and tumor-killing capability remains unclear. METHODS: To investigate the functionality and tumor-specificity of tumor-infiltrating lymphocytes (TILs) across HNSCCs, malignant cell lines and TILs were derived from 31 HPV-negative HNSCCs at the time of standard surgical resection. T cell functional capacity was evaluated through ex vivo expansion, immunophenotyping, and IsoLight single-cell proteomics. Tumor-specificity was investigated through both bulk and single-cell tumor-TIL co-culture. RESULTS: TILs could be successfully generated from 24 patients (77%), including both previously untreated and radiation recurrent HNSCCs. We demonstrate that across HNSCCs, TILs express multiple exhaustion markers but maintain a predominantly effector memory phenotype. After ex vivo expansion, TILs retain immunogenic functionality even from radiation-resistant, exhausted, and T cell-depleted disease. We further demonstrate tumor-specificity of T cells across HNSCC patients through patient-matched malignant cell-T cell co-culture. Finally, we use optofluidic technology to establish an autologous single tumor cell-single T cell co-culture platform for HNSCC. Cells derived from three HNSCC patients underwent single-cell co-culture which enabled identification and visualization of individual tumor-killing TILs in real-time in all patients. CONCLUSIONS: These studies show that cancer-specific T cells exist across HNSCC patients with rescuable immunogenicity and can be identified on a single-cell level. These data lay the foundation for development of patient-specific T cell immunotherapies in HNSCC.

5.
Front Oncol ; 9: 1529, 2019.
Article in English | MEDLINE | ID: mdl-32076597

ABSTRACT

Chimeric Antigen Receptor (CAR)-based therapies offer a promising, targeted approach to effectively treat relapsed or refractory B cell malignancies. However, the treatment-related toxicity defined as cytokine-release syndrome (CRS) often develops in patients, and if uncontrolled, can be fatal. Grading systems have now been developed to further characterize and objectify clinical findings in order to provide algorithm-based guidance on CRS-related treatment decisions. The pharmacological treatments associated with these algorithms suppress inflammation through a variety of mechanisms and are paramount to improving the safety profile of CAR-based therapies. However, fatalities are still occurring, and there are downsides to these treatments, including the possibility of disrupting CAR-T cell persistence. This review article will describe the clinical presentation and current management of CRS, and through our now deeper understanding of downstream signaling pathways, will provide a molecular framework to formulate new hypotheses regarding clinical applications to contain proinflammatory cytokines responsible for CRS.

6.
J Immunol ; 190(11): 5620-8, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23616570

ABSTRACT

Early phase clinical trials targeting the programmed death receptor-1/ligand-1 (PD-1/PD-L1) pathway to overcome tumor-mediated immunosuppression have reported promising results for a variety of cancers. This pathway appears to play an important role in the failure of immune reactivity to malignant plasma cells in multiple myeloma patients, as the tumor cells express relatively high levels of PD-L1, and T cells show increased PD-1 expression. In the current study, we demonstrate that PD-1/PD-L1 blockade with a PD-L1-specific Ab elicits rejection of a murine myeloma when combined with lymphodepleting irradiation. This particular combined approach by itself has not previously been shown to be efficacious in other tumor models. The antitumor effect of lymphodepletion/anti-PD-L1 therapy was most robust when tumor Ag-experienced T cells were present either through cell transfer or survival after nonmyeloablative irradiation. In vivo depletion of CD4 or CD8 T cells completely eliminated antitumor efficacy of the lymphodepletion/anti-PD-L1 therapy, indicating that both T cell subsets are necessary for tumor rejection. Elimination of myeloma by T cells occurs relatively quickly as tumor cells in the bone marrow were nearly nondetectable by 5 d after the first anti-PD-L1 treatment, suggesting that antimyeloma reactivity is primarily mediated by preactivated T cells, rather than newly generated myeloma-reactive T cells. Anti-PD-L1 plus lymphodepletion failed to improve survival in two solid tumor models, but demonstrated significant efficacy in two hematologic malignancy models. In summary, our results support the clinical testing of lymphodepletion and PD-1/PD-L1 blockade as a novel approach for improving the survival of patients with multiple myeloma.


Subject(s)
Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Lymphocyte Depletion , Multiple Myeloma/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antibodies, Monoclonal/administration & dosage , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Disease Models, Animal , Gene Expression , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Multiple Myeloma/genetics , Multiple Myeloma/immunology , Multiple Myeloma/mortality , Whole-Body Irradiation
7.
Biochim Biophys Acta ; 1821(12): 1501-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22960380

ABSTRACT

Microparticles (MPs) are membrane-bound vesicles shed normally or as a result of various (pathological) stimuli. MPs contain a wealth of bio-active macromolecules. Aminophospholipid phosphatidylserine (PS) is present on the surface of many MPs. As PS and phosphatidylethanolamine (PE) are related, yet distinct aminophospholipids, the purpose of this study was to systematically and directly assess PE exposure on MPs. We examined MPs from various human cellular sources (human breast cancer, endothelial, red and white blood cells) by flow cytometry using a PE-specific probe, duramycin, and two PS-specific probes, annexin V and lactadherin. PS and PE exposure percentage was comparable on vascular and blood cell-derived MPs (80-90% of MP-gated events). However, the percentage of malignant breast cancer MPs exposing PE (~90%) was significantly higher than PS (~50%). Thus, while PS and PE exposure can result from a general loss of membrane asymmetry, there may also be distinct mechanisms of PE and PS exposure on MPs that vary by cellular source.


Subject(s)
Cell-Derived Microparticles/metabolism , Endothelial Cells/metabolism , Erythrocytes/metabolism , Phosphatidylethanolamines/metabolism , Bacteriocins/chemistry , Bacteriocins/metabolism , Bacteriocins/pharmacology , Biotin/chemistry , Blood Coagulation/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell-Derived Microparticles/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Flow Cytometry , Humans , Microscopy, Confocal , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Phosphatidylethanolamines/chemistry
8.
Methods Mol Med ; 129: 163-85, 2006.
Article in English | MEDLINE | ID: mdl-17085811

ABSTRACT

The discovery that oocytes of the frog Xenopus laevis can be induced to express working membrane ion channels by introducing channel mRNA into their cytoplasm (heterologous expression) has greatly impacted the field of ion channel physiology. With the addition of site-directed mutagenesis techniques, the functional consequences of virtually any mutation can now be specifically and easily assessed. Here, we describe an effective procedure for investigating cardiac sodium channel gating (hNaV1.5) both in Xenopus oocytes, and in a mammalian expression system, human embryonic kidney (HEK) 293 cells. We describe cell attached patch clamp for oocytes, and whole cell voltage clamp in HEK 293 cells.


Subject(s)
Muscle Proteins/metabolism , Oocytes/metabolism , Patch-Clamp Techniques/methods , Sodium Channels/metabolism , Animals , Cell Line , Electrodes , Electrophysiology , Gene Expression , Humans , Microinjections , NAV1.5 Voltage-Gated Sodium Channel , RNA, Messenger , Transfection , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...