Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(24): e2320898121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833464

ABSTRACT

The World Health Organization identifies a strong surveillance system for malaria and its mosquito vector as an essential pillar of the malaria elimination agenda. Anopheles salivary antibodies are emerging biomarkers of exposure to mosquito bites that potentially overcome sensitivity and logistical constraints of traditional entomological surveys. Using samples collected by a village health volunteer network in 104 villages in Southeast Myanmar during routine surveillance, the present study employs a Bayesian geostatistical modeling framework, incorporating climatic and environmental variables together with Anopheles salivary antigen serology, to generate spatially continuous predictive maps of Anopheles biting exposure. Our maps quantify fine-scale spatial and temporal heterogeneity in Anopheles salivary antibody seroprevalence (ranging from 9 to 99%) that serves as a proxy of exposure to Anopheles bites and advances current static maps of only Anopheles occurrence. We also developed an innovative framework to perform surveillance of malaria transmission. By incorporating antibodies against the vector and the transmissible form of malaria (sporozoite) in a joint Bayesian geostatistical model, we predict several foci of ongoing transmission. In our study, we demonstrate that antibodies specific for Anopheles salivary and sporozoite antigens are a logistically feasible metric with which to quantify and characterize heterogeneity in exposure to vector bites and malaria transmission. These approaches could readily be scaled up into existing village health volunteer surveillance networks to identify foci of residual malaria transmission, which could be targeted with supplementary interventions to accelerate progress toward elimination.


Subject(s)
Anopheles , Bayes Theorem , Malaria , Mosquito Vectors , Animals , Anopheles/parasitology , Mosquito Vectors/parasitology , Humans , Malaria/transmission , Malaria/epidemiology , Malaria/immunology , Malaria/parasitology , Seroepidemiologic Studies , Insect Bites and Stings/epidemiology , Insect Bites and Stings/immunology , Insect Bites and Stings/parasitology , Sporozoites/immunology
2.
Malar J ; 22(1): 204, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37408026

ABSTRACT

BACKGROUND: Despite recent reductions in Vietnam, malaria transmission persists in some areas in forests and farmlands where a high density of Anopheles mosquitoes relative to other environments occurs. To inform effective malaria control measures, it is important to understand vector bionomics and the malaria transmission role of Anopheles spp. in the highland regions of Vietnam. This study was conducted to quantify the abundance, composition and biting behaviour of the Anopheles mosquito population, and the proportion of Plasmodium spp. infected mosquitoes collected from forest and agricultural farm sites in Gia Lai province, Vietnam. METHODS: Forest and agricultural farm sites in Gia Lai province were selected for mosquito collections (total eight sites). Mosquito collection was performed by Human-baited Double Net Trap (HDNT), animal-baited traps (ABT) using cattle, and CDC light traps. Captured mosquitoes were identified morphologically, and salivary glands of Anopheles mosquitoes were examined for sporozoites using microscopy. Plasmodium infection was determined by Polymerase Chain Reaction (PCR), and identification of blood meal type was determined by PCR and diffuse serum agglutination assay. RESULTS: A total of 1815 Anopheles mosquitoes belonging to 19 species were collected by ABT (n = 1169), HDNT (n = 471) and CDC light trap (n = 175). Anopheles abundance and diversity varied by district and environment. Capture by HDNT of Anopheles of vectorial concern was observed between early evening and early morning. Plasmodium vivax infection was determined by PCR in two Anopheles dirus specimens captured by HDNT in forest sites. Blood from a range of hosts could, including human blood, could be detected in species considered primary and secondary vectors An. dirus, and Anopheles aconitus, and Anopheles maculatus, respectively. CONCLUSIONS: A low number of Anopheles spp. considered primary vectors of concern and very low numbers of Plasmodium spp. infected Anopheles mosquitoes were captured at the end of the rainy season in the Central Highlands of Vietnam. However, capture species of vectorial concern by HDNT throughout the early to late evening demonstrates that use of additional personal protective measures could supplement current preventative measures, such as bed nets to prevent exposure to vectors of concern in this region.


Subject(s)
Anopheles , Malaria , Plasmodium , Humans , Animals , Cattle , Farms , Vietnam/epidemiology , Mosquito Vectors , Malaria/epidemiology , Forests
3.
Malar J ; 22(1): 140, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37106350

ABSTRACT

Myanmar, a country in Greater Mekong Sub-region, aims to eliminate malaria by 2030. To achieve malaria elimination, Myanmar adopted a reactive surveillance and response strategy of malaria case notification within 1 day and case investigation, foci investigation and response activities within 7 days. A literature review was conducted to gain a better understanding of how the reactive surveillance and response strategies are being implemented in Myanmar including enablers and barriers to their implementation. Only two assessments of the completeness and timeliness of reactive surveillance and response strategy in Myanmar have been published to date. The proportion of positive cases notified within one day was 27.9% and the proportion of positive cases investigated within 7 days as recommended by the national guidelines varied from 32.5 to 91.8% under different settings in reported studies. Strong collaboration between the National Malaria Control Programme and implementing partners, and adequate human resource and financial support contributed to a successful and timely implementation of reactive surveillance and response strategy. Documented enablers for successful implementation of reactive surveillance and response strategy included frontline health workers having good knowledge of reactive surveillance and response activities and availability of Basic Health Staff for timely implementation of foci response activities. Barriers for implementation of reactive surveillance and response activities were also identified, including shortage of human resources especially in hard-to-reach settings, limited mobile phone network services and internet coverage leading to delays in timely notification of malaria cases, lengthy and complex case investigation forms and different reporting systems between Basic Health Staff and volunteers.


Subject(s)
Cell Phone , Malaria , Humans , Myanmar/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Health Personnel
4.
BMC Infect Dis ; 22(1): 747, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153501

ABSTRACT

BACKGROUND: Countries of the Greater Mekong Sub-region aim to achieve malaria elimination by 2030. In the region, malaria is concentrated in high-risk areas and populations such as forest-going mobile and migrant populations (MMPs). However, routine protective measures such as long-lasting insecticidal nets do not prevent all infectious bites in these high-risk populations. Evidence for the effectiveness of a personal protection package tailored to forest-going MMPs which is acceptable, feasible, and cost-effective for reducing malaria transmission is required to inform the malaria elimination toolkit in the region. METHODS: A personal protection package consisting of long-lasting insecticidal hammock net, insect repellent and health communication pamphlet was developed in consultation with relevant implementing partners from Cambodia and Lao PDR. An open stepped-wedge cluster-randomised controlled trial will be conducted over a period of 12 months in a minimum of 488 villages (~ 428 in Lao PDR and ~ 60 in Cambodia) to evaluate the effectiveness of the personal protection package. Villages will be randomised into 11 blocks, with blocks transitioned in random order from control to intervention states at monthly intervals, following a 1-month baseline period. The primary outcome of the trial is the prevalence of Plasmodium spp. infection diagnosed by rapid diagnostic test. Difference in prevalence of malaria infection will be estimated across intervention and control periods using generalized linear mixed modelling. Nested within the stepped-wedge cluster-randomised controlled trial is a mixed-methods study to explore the acceptability of the personal protection package, feasibility of implementing a personal protection package as a vector control intervention, and knowledge, attitude and practice of MMPs regarding malaria prevention; and cost-analysis to determine the cost-effectiveness of implementing a personal protection package. DISCUSSION: This study, using a rigorous design and mixed-methods methodology, will evaluate whether a personal protection package can reduce residual malaria transmission among forest-going MMPs in Cambodia and Lao PDR. It will also measure implementation research outcomes such as effectiveness of the intervention package, cost-effectiveness, acceptability, and feasibility, in order to inform potential national and regional policy. Trial registration This trial was prospectively registered on ClinicalTrials.gov (NCT05117567) on 11th November 2021.


Subject(s)
Insect Repellents , Insecticides , Malaria , Transients and Migrants , Cambodia/epidemiology , Forests , Humans , Laos/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Randomized Controlled Trials as Topic
5.
Elife ; 102021 12 23.
Article in English | MEDLINE | ID: mdl-34939933

ABSTRACT

Background: Entomological surveillance for malaria is inherently resource-intensive and produces crude population-level measures of vector exposure which are insensitive in low-transmission settings. Antibodies against Anopheles salivary proteins measured at the individual level may serve as proxy biomarkers for vector exposure and malaria transmission, but their relationship is yet to be quantified. Methods: A systematic review of studies measuring antibodies against Anopheles salivary antigens (PROSPERO: CRD42020185449). Multilevel modelling (to account for multiple study-specific observations [level 1], nested within study [level 2], and study nested within country [level 3]) estimated associations between seroprevalence with Anopheles human biting rate (HBR) and malaria transmission measures. Results: From 3981 studies identified in literature searches, 42 studies across 16 countries were included contributing 393 study-specific observations of anti-Anopheles salivary antibodies determined in 42,764 samples. A positive association between HBR (log transformed) and seroprevalence was found; overall a twofold (100% relative) increase in HBR was associated with a 23% increase in odds of seropositivity (OR: 1.23, 95% CI: 1.10-1.37; p<0.001). The association between HBR and Anopheles salivary antibodies was strongest with concordant, rather than discordant, Anopheles species. Seroprevalence was also significantly positively associated with established epidemiological measures of malaria transmission: entomological inoculation rate, Plasmodium spp. prevalence, and malarial endemicity class. Conclusions: Anopheles salivary antibody biomarkers can serve as a proxy measure for HBR and malaria transmission, and could monitor malaria receptivity of a population to sustain malaria transmission. Validation of Anopheles species-specific biomarkers is important given the global heterogeneity in the distribution of Anopheles species. Salivary biomarkers have the potential to transform surveillance by replacing impractical, inaccurate entomological investigations, especially in areas progressing towards malaria elimination. Funding: Australian National Health and Medical Research Council, Wellcome Trust.


Subject(s)
Anopheles/immunology , Antigens, Protozoan/immunology , Insect Proteins/immunology , Malaria/transmission , Salivary Proteins and Peptides/immunology , Animals , Antibodies, Protozoan/immunology , Australia , Biomarkers , Humans , Immunoglobulin G/immunology , Insect Bites and Stings , Malaria/epidemiology , Malaria/immunology , Models, Theoretical , Mosquito Vectors/immunology , Plasmodium falciparum/immunology , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...