Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(5): e0215977, 2019.
Article in English | MEDLINE | ID: mdl-31048905

ABSTRACT

The retreat of coastal forests as sea level rises is well documented; however, the mechanisms which control this retreat vary with the physical and biological setting of the interface between tidal marsh and forest. Tidal flooding and saltwater intrusion as well as flooding and wind associated with storms can kill trees. Even if these processes do not kill stands, they may halt regeneration because seedlings are more sensitive to stress. We present a case study of a coastal pine forest on the Delmarva Peninsula, United States. This forest contains a persistent but nonregenerating zone of mature trees, the size of which is related to the sea level rise experienced since forest establishment. The transgression of coastal forest and shrub or marsh ecosystems is an ecological ratchet: sea-level rise pushes the regeneration boundary further into the forest while extreme events move the persistence boundary up to the regeneration boundary.


Subject(s)
Climate Change/history , Conservation of Natural Resources/trends , Sea Level Rise/history , Ecosystem , Floods , Forests , History, 20th Century , History, 21st Century , Regeneration , Seedlings , Trees
2.
Nat Commun ; 7: 12287, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27430165

ABSTRACT

Tidal channel networks mediate the exchange of water, nutrients and sediment between an estuary and marshes. Biology feeds back into channel morphodynamics through the influence of vegetation on both flow and the cohesive strength of channel banks. Determining how vegetation affects channel networks is essential in understanding the biological functioning of intertidal ecosystems and their ecosystem services. However, the processes that control the formation of an efficient tidal channel network remain unclear. Here we compare the channel networks of vegetated salt marshes in Massachusetts and the Venice Lagoon to unvegetated systems in the arid environments of the Gulf of California and Yemen. We find that the unvegetated systems are dissected by less efficient channel networks than the vegetated salt marshes. These differences in network geometry reflect differences in the branching and meandering of the channels in the network, characteristics that are related to the density of vegetation on the marsh.

SELECTION OF CITATIONS
SEARCH DETAIL
...