Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 36(23): 2956-2966, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27644327

ABSTRACT

Skeletal muscle insulin resistance is a major characteristic of obesity and type 2 diabetes. Although obesity-mediated inflammation is causally associated with insulin resistance, the underlying mechanism is unclear. Here, we examined the effects of chronic obesity in mice with muscle-specific overexpression of interleukin-10 (MIL10). After 16 weeks of a high-fat diet (HFD), MIL10 mice became markedly obese but showed improved insulin action compared to that of wild-type mice, which was largely due to increased glucose metabolism and reduced inflammation in skeletal muscle. Since leptin regulates inflammation, the beneficial effects of interleukin-10 (IL-10) were further examined in leptin-deficient ob/ob mice. Muscle-specific overexpression of IL-10 in ob/ob mice (MCK-IL10ob/ob) did not affect spontaneous obesity, but MCK-IL10ob/ob mice showed increased glucose turnover compared to that in ob/ob mice. Last, mice with muscle-specific ablation of IL-10 receptor (M-IL10R-/-) were generated to determine whether IL-10 signaling in skeletal muscle is involved in IL-10 effects on glucose metabolism. After an HFD, M-IL10R-/- mice developed insulin resistance with reduced glucose metabolism compared to that in wild-type mice. Overall, these results demonstrate IL-10 effects to attenuate obesity-mediated inflammation and improve insulin sensitivity in skeletal muscle, and our findings implicate a potential therapeutic role of anti-inflammatory cytokines in treating insulin resistance and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/immunology , Insulin Resistance , Interleukin-10/genetics , Leptin/genetics , Muscle, Skeletal/immunology , Animals , Cells, Cultured , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/genetics , Diet, High-Fat , Disease Models, Animal , Gene Knockout Techniques , Glucose/metabolism , Mice , Obesity , Receptors, Interleukin-10/genetics , Receptors, Interleukin-10/metabolism , Signal Transduction
2.
FASEB J ; 30(3): 1328-38, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26644351

ABSTRACT

Obesity is characterized by a dysregulated immune system, which may causally associate with insulin resistance and type 2 diabetes. Despite widespread use of nonobese diabetic (NOD) mice, NOD with severe combined immunodeficiency (scid) mutation (SCID) mice, and SCID bearing a null mutation in the IL-2 common γ chain receptor (NSG) mice as animal models of human diseases including type 1 diabetes, the underlying metabolic effects of a genetically altered immune system are poorly understood. For this, we performed a comprehensive metabolic characterization of these mice fed chow or after 6 wk of a high-fat diet. We found that NOD mice had ∼50% less fat mass and were 2-fold more insulin sensitive, as measured by hyperinsulinemic-euglycemic clamp, than C57BL/6 wild-type mice. SCID mice were also more insulin sensitive with increased muscle glucose metabolism and resistant to diet-induced obesity due to increased energy expenditure (∼10%) and physical activity (∼40%) as measured by metabolic cages. NSG mice were completely protected from diet-induced obesity and insulin resistance with significant increases in glucose metabolism in peripheral organs. Our findings demonstrate an important role of genetic background, lymphocytes, and cytokine signaling in diet-induced obesity and insulin resistance.


Subject(s)
Insulin Resistance/physiology , Interleukin-2/metabolism , Lymphocytes/metabolism , Mice, Inbred NOD/metabolism , Obesity/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Energy Metabolism/physiology , Glucose/metabolism , Glucose Clamp Technique/methods , Insulin/metabolism , Lymphocytes/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Obesity/physiopathology , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...