Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 19(2): 733-743, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31913636

ABSTRACT

In cells, asparagine/N-linked glycans are added to glycoproteins cotranslationally, in an attachment process that supports proper folding of the nascent polypeptide. We found that following pruning of N-glycan by the amidase PNGase F, the principal influenza vaccine antigen and major viral spike protein hemagglutinin (HA) spontaneously reattached N-glycan to its de-N-glycosylated positions when the amidase was removed from solution. This reaction, which we term N-glycanation, was confirmed by site-specific analysis of HA glycoforms by mass spectrometry prior to PNGase F exposure, during exposure to PNGase F, and after amidase removal. Iterative rounds of de-N-glycosylation followed by N-glycanation could be repeated at least three times and were observed for other viral glycoproteins/vaccine antigens, including the envelope glycoprotein (Env) from HIV. Covalent N-glycan reattachment was nonenzymatic as it occurred in the presence of metal ions that inhibit PNGase F activity. Rather, N-glycanation relied on a noncovalent assembly between protein and glycan, formed in the presence of the amidase, where linearization of the glycoprotein prevented this retention and subsequent N-glycanation. This reaction suggests that under certain experimental conditions, some glycoproteins can organize self-glycan addition, highlighting a remarkable self-assembly principle that may prove useful for re-engineering therapeutic glycoproteins such as influenza HA or HIV Env, where glycan sequence and structure can markedly affect bioactivity and vaccine efficacy.


Subject(s)
AIDS Vaccines , Influenza Vaccines , Influenza, Human , HIV Antigens , Humans , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , Polysaccharides
2.
Nat Med ; 22(3): 262-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26828195

ABSTRACT

Although mechanisms of acquired resistance of epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here we observe that acquired resistance caused by the EGFR(T790M) gatekeeper mutation can occur either by selection of pre-existing EGFR(T790M)-positive clones or via genetic evolution of initially EGFR(T790M)-negative drug-tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug-tolerant cells had a diminished apoptotic response to third-generation EGFR inhibitors that target EGFR(T790M); treatment with navitoclax, an inhibitor of the anti-apoptotic factors BCL-xL and BCL-2 restored sensitivity. We corroborated these findings using cultures derived directly from EGFR inhibitor-resistant patient tumors. These findings provide evidence that clinically relevant drug-resistant cancer cells can both pre-exist and evolve from drug-tolerant cells, and they point to therapeutic opportunities to prevent or overcome resistance in the clinic.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , RNA, Messenger/drug effects , Apoptosis/drug effects , Apoptosis/genetics , Blotting, Western , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Gefitinib , Humans , In Vitro Techniques , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mutation , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...