Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Diagn ; 17(4): 438-45, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25960256

ABSTRACT

A 15-gene prognostic signature for early-stage, completely resected, non-small-cell lung carcinoma, (which distinguishes between patients with good and poor prognoses) was clinically validated in prior studies. To achieve operational efficiencies, this study was designed to evaluate the assay's performance in RNA-stabilized tissue as an alternative to the fresh-frozen tissue format originally used to develop the assay. The percent concordance between matched tissue formats was 84% (95% Wilson CI, 70%-92%), a level of agreement comparable to the inherent reproducibility of the assay observed within biological replicates of fresh-frozen tissue. Furthermore, the analytical performance of the assay using the RNA-stabilized tissue format was evaluated. When compared to an accredited reference laboratory, the clinical laboratory achieved a concordance of 94% (95% Wilson CI, 81%-98%), and there was no evidence of bias between the laboratories. The lower limit of quantitation for the target RNA concentration was confirmed to be, at most, 12.5 ng/µL. The assay reportable range defined in terms of risk score units was determined to be -4.295 to 4.210. In a large-scale precision study, the assay showed high reproducibility and repeatability. When subjected to a maximal amount of genomic DNA, a potential contaminant, the assay still produced the expected results. The 15-gene signature was confirmed to produce reliable results and, thus, is suitable for its intended use.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , DNA, Neoplasm/genetics , High-Throughput Nucleotide Sequencing/methods , Lung Neoplasms/diagnosis , RNA, Neoplasm/chemistry , Reagent Kits, Diagnostic/standards , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Humans , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Paraffin Embedding , Prognosis , Sensitivity and Specificity
2.
BMC Med Genomics ; 8: 5, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25889064

ABSTRACT

BACKGROUND: Adoption of new technology in both basic research and clinical settings requires rigorous validation of analytical performance. The OncoScan® FFPE Assay is a multiplexing tool that offers genome-wide copy number and loss of heterozygosity detection, as well as identification of frequently tested somatic mutations. METHODS: In this study, 162 formalin fixed paraffin embedded samples, representing six different tumour types, were profiled in triplicate across three independent laboratories. OncoScan® formalin fixed paraffin embedded assay data was then analysed for reproducibility of genome-wide copy number, loss of heterozygosity and somatic mutations. Where available, somatic mutation data was compared to data from orthogonal technologies (pyro/sanger sequencing). RESULTS: Cross site comparisons of genome-wide copy number and loss of heterozygosity profiles showed greater than 95% average agreement between sites. Somatic mutations pre-validated by orthogonal technologies showed greater than 90% agreement with OncoScan® somatic mutation calls and somatic mutation concordance between sites averaged 97%. CONCLUSIONS: Reproducibility of whole-genome copy number, loss of heterozygosity and somatic mutation data using the OncoScan® assay has been demonstrated with comparatively low DNA inputs from a range of highly degraded formalin fixed paraffin embedded samples. In addition, our data shows examples of clinically-relevant aberrations that demonstrate the potential utility of the OncoScan® assay as a robust clinical tool for guiding tumour therapy.


Subject(s)
Clinical Laboratory Techniques/standards , Gene Expression Profiling/methods , Genome, Human , Neoplasms/genetics , Oligonucleotide Array Sequence Analysis/methods , Tissue Fixation/methods , DNA Mutational Analysis , Female , Gene Expression Regulation, Neoplastic , Humans , Loss of Heterozygosity , Male , Mutation , Neoplasms/metabolism , Paraffin Embedding , Quality Control , Reproducibility of Results , Sensitivity and Specificity , Sequence Analysis, DNA
3.
J Natl Cancer Inst ; 106(1): djt335, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24402422

ABSTRACT

BACKGROUND: There is no method routinely used to predict response to anthracycline and cyclophosphamide-based chemotherapy in the clinic; therefore patients often receive treatment for breast cancer with no benefit. Loss of the Fanconi anemia/BRCA (FA/BRCA) DNA damage response (DDR) pathway occurs in approximately 25% of breast cancer patients through several mechanisms and results in sensitization to DNA-damaging agents. The aim of this study was to develop an assay to detect DDR-deficient tumors associated with loss of the FA/BRCA pathway, for the purpose of treatment selection. METHODS: DNA microarray data from 21 FA patients and 11 control subjects were analyzed to identify genetic processes associated with a deficiency in DDR. Unsupervised hierarchical clustering was then performed using 60 BRCA1/2 mutant and 47 sporadic tumor samples, and a molecular subgroup was identified that was defined by the molecular processes represented within FA patients. A 44-gene microarray-based assay (the DDR deficiency assay) was developed to prospectively identify this subgroup from formalin-fixed, paraffin-embedded samples. All statistical tests were two-sided. RESULTS: In a publicly available independent cohort of 203 patients, the assay predicted complete pathologic response vs residual disease after neoadjuvant DNA-damaging chemotherapy (5-fluorouracil, anthracycline, and cyclophosphamide) with an odds ratio of 3.96 (95% confidence interval [Cl] =1.67 to 9.41; P = .002). In a new independent cohort of 191 breast cancer patients treated with adjuvant 5-fluorouracil, epirubicin, and cyclophosphamide, a positive assay result predicted 5-year relapse-free survival with a hazard ratio of 0.37 (95% Cl = 0.15 to 0.88; P = .03) compared with the assay negative population. CONCLUSIONS: A formalin-fixed, paraffin-embedded tissue-based assay has been developed and independently validated as a predictor of response and prognosis after anthracycline/cyclophosphamide-based chemotherapy in the neoadjuvant and adjuvant settings. These findings warrant further validation in a prospective clinical study.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , DNA Damage/drug effects , DNA, Neoplasm/drug effects , Fanconi Anemia/metabolism , Adult , Aged , Anthracyclines/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/genetics , Chemotherapy, Adjuvant , Cyclophosphamide/administration & dosage , Disease-Free Survival , Epirubicin/administration & dosage , Fanconi Anemia/genetics , Female , Fluorouracil/administration & dosage , Humans , Middle Aged , Neoadjuvant Therapy/methods , Odds Ratio , Oligonucleotide Array Sequence Analysis , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...