Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Organs ; 47(9): 1442-1451, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37376726

ABSTRACT

BACKGROUND: Extracorporeal organ assist devices provide lifesaving functions for acutely and chronically ill patients suffering from respiratory and renal failure, but their availability and use is severely limited by an extremely high level of operational complexity. While current hollow fiber-based devices provide high-efficiency blood gas transfer and waste removal in extracorporeal membrane oxygenation (ECMO) and hemodialysis, respectively, their impact on blood health is often highly deleterious and difficult to control. Further challenges are encountered when integrating multiple organ support functions, as is often required when ECMO and ultrafiltration (UF) are combined to deal with fluid overload in critically ill patients, necessitating an unwieldy circuit containing two separate cartridges. METHODS: We report the first laboratory demonstration of simultaneous blood gas oxygenation and fluid removal in single microfluidic circuit, an achievement enabled by the microchannel-based blood flow configuration of the device. Porcine blood is flowed through a stack of two microfluidic layers, one with a non-porous, gas-permeable silicone membrane separating blood and oxygen chambers, and the other containing a porous dialysis membrane separating blood and filtrate compartments. RESULTS: High levels of oxygen transfer are measured across the oxygenator, while tunable rates of fluid removal, governed by the transmembrane pressure (TMP), are achieved across the UF layer. Key parameters including the blood flow rate, TMP and hematocrit are monitored and compared with computationally predicted performance metrics. CONCLUSIONS: These results represent a model demonstration of a potential future clinical therapy where respiratory support and fluid removal are both realized through a single monolithic cartridge.


Subject(s)
Extracorporeal Membrane Oxygenation , Microfluidics , Humans , Extracorporeal Membrane Oxygenation/methods , Oxygen , Hemodynamics/physiology , Silicones
2.
Adv Sci (Weinh) ; 10(18): e2207455, 2023 06.
Article in English | MEDLINE | ID: mdl-37092588

ABSTRACT

Recent global events such as COVID-19 pandemic amid rising rates of chronic lung diseases highlight the need for safer, simpler, and more available treatments for respiratory failure, with increasing interest in extracorporeal membrane oxygenation (ECMO). A key factor limiting use of this technology is the complexity of the blood circuit, resulting in clotting and bleeding and necessitating treatment in specialized care centers. Microfluidic oxygenators represent a promising potential solution, but have not reached the scale or performance required for comparison with conventional hollow fiber membrane oxygenators (HFMOs). Here the development and demonstration of the first microfluidic respiratory assist device at a clinical scale is reported, demonstrating efficient oxygen transfer at blood flow rates of 750 mL min⁻1 , the highest ever reported for a microfluidic device. The central innovation of this technology is a fully 3D branching network of blood channels mimicking key features of the physiological microcirculation by avoiding anomalous blood flows that lead to thrombus formation and blood damage in conventional oxygenators. Low, stable blood pressure drop, low hemolysis, and consistent oxygen transfer, in 24-hour pilot large animal experiments are demonstrated - a key step toward translation of this technology to the clinic for treatment of a range of lung diseases.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Animals , Humans , Microfluidics , Pandemics , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...