Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 183: 102-111, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29331769

ABSTRACT

Whilst prior nuclear forensic studies have focused on identifying signatures to distinguish between different uranium deposit types, this paper focuses on providing a scientific basis for source identification of materials from different uranium mine sites within a single region, which can then be potentially used within nuclear forensics. A number of different tools, including gamma spectrometry, alpha spectrometry, mineralogy and major and minor elemental analysis, have been utilised to determine the provenance of uranium mineral samples collected at eight mine sites, located within three different uranium provinces, in Portugal. A radiation survey was initially conducted by foot and/or unmanned aerial vehicle at each site to assist sample collection. The results from each mine site were then compared to determine if individual mine sites could be distinguished based on characteristic elemental and isotopic signatures. Gamma and alpha spectrometry were used to differentiate between samples from different sites and also give an indication of past milling and mining activities. Ore samples from the different mine sites were found to be very similar in terms of gangue and uranium mineralogy. However, rarer minerals or specific impurity elements, such as calcium and copper, did permit some separation of the sites examined. In addition, classification rates using linear discriminant analysis were comparable to those in the literature.


Subject(s)
Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis , Uranium/analysis , Mining , Portugal
2.
J Environ Radioact ; 150: 75-85, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26301831

ABSTRACT

Minor element composition and rare earth element (REE) concentrations in nuclear materials are important as they are used within the field of nuclear forensics as an indicator of sample origin. However recent studies into uranium ores and uranium ore concentrates (UOCs) have shown significant elemental and isotopic heterogeneity from a single mine site such that some sites have shown higher variation within the mine site than that seen between multiple sites. The elemental composition of both uranium and gangue minerals within ore samples taken along a single mineral vein in South West England have been measured and reported here. The analysis of the samples was undertaken to determine the extent of the localised variation in key elements. Energy Dispersive X-ray spectroscopy (EDS) was used to analyse the gangue mineralogy and measure major element composition. Minor element composition and rare earth element (REE) concentrations were measured by Electron Probe Microanalysis (EPMA). The results confirm that a number of key elements, REE concentrations and patterns used for origin location do show significant variation within mine. Furthermore significant variation is also visible on a meter scale. In addition three separate uranium phases were identified within the vein which indicates multiple uranium mineralisation events. In light of these localised elemental variations it is recommended that representative sampling for an area is undertaken prior to establishing the REE pattern that may be used to identify the originating mine for an unknown ore sample and prior to investigating impact of ore processing on any arising REE patterns.


Subject(s)
Radiation Monitoring , Electron Probe Microanalysis , England , Mining , Spectrometry, X-Ray Emission , Uranium/analysis
3.
J Environ Radioact ; 136: 127-30, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24949582

ABSTRACT

The Fukushima Daiichi nuclear power plant (FDNPP) incident released a significant mass of radioactive material into the atmosphere. An estimated 22% of this material fell out over land following the incident. Immediately following the disaster, there was a severe lack of information not only pertaining to the identity of the radioactive material released, but also its distribution as fallout in the surrounding regions. Indeed, emergency aid groups including the UN did not have sufficient location specific radiation data to accurately assign exclusion and evacuation zones surrounding the plant in the days and weeks following the incident. A newly developed instrument to provide rapid and high spatial resolution assessment of radionuclide contamination in the environment is presented. The device consists of a low cost, lightweight, unmanned aerial platform with a microcontroller and integrated gamma spectrometer, GPS and LIDAR. We demonstrate that with this instrument it is possible to rapidly and remotely detect ground-based radiation anomalies with a high spatial resolution (<1 m). Critically, as the device is remotely operated, the user is removed from any unnecessary or unforeseen exposure to elevated levels of radiation.


Subject(s)
Aircraft , Radiation Monitoring/instrumentation , Radioactive Fallout/analysis , Radioisotopes/analysis , Remote Sensing Technology/instrumentation , Soil Pollutants, Radioactive/analysis , Geographic Information Systems/instrumentation , Radar/instrumentation , Spectrometry, Gamma/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...