Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(8): e0273822, 2022.
Article in English | MEDLINE | ID: mdl-36040922

ABSTRACT

In the absence of historical information on phenology available in Australia, expert opinion was used for selecting indicator species that would be suitable for monitoring phenology on a continental scale as part of ClimateWatch-a citizen science program. Jacaranda mimosifolia being the most frequently observed species was used in this study to test expert opinion and the adequacy of citizen science records in detecting the influence of climatic conditions on this species' flowering phenology. Generalised Additive Models for Location Scale and Shape were used to explore the occurrence and intensity of flowering of Jacaranda in relation to rainfall, temperature, and sun exposure. Jacaranda flowering onset was influenced by winter cold exposure, while flowering intensity was related to increasing sun exposure as spring progresses, and both were influenced by the conditions for flowering in the former flowering seasons (i.e., sun exposure and highest temperatures reached, respectively). Our models provide the first attempt to describe the climate drivers for Jacaranda mimosifolia flowering in the southern hemisphere and identify where climatic changes will most likely alter this tree's phenology in Australia and benefit or challenge its reproductive ability. They also support the choice of species for citizen science programs based on expert opinion.


Subject(s)
Citizen Science , Climate Change , Expert Testimony , Flowers , Seasons , Temperature
2.
3.
Int J Biometeorol ; 61(Suppl 1): 11-18, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28653204

ABSTRACT

Over the decade 2007-2016, the International Society of Biometeorology (ISB) has pursued its purpose of advancing the science of biometeorology through its Congresses and sponsoring conferences, meetings and workshops. In conjunction with Springer, ISB has introduced a new book series: Biometeorology, and published three volumes. ISB's journal, the International Journal of Biometeorology, has increased the number of issues to 12 per year and added the Fields of 'Aerobiology', 'Climate Change and Ecology' and 'Climate Change and Public Health'. Within ISB, there are currently six Commissions, reflecting the interests of the members and the needs of society. The newest, Biophysics of Adaptation and Response Commission, formed in 2015. Another group which formed over the decade was the Students and New Professionals Group. The Universal Thermal Climate Index Commission was formally dissolved in 2014 having met its aim of developing an easily understood human thermal index. At the Executive Board level, geographical representation has increased, with Councillors now being elected to represent six regions: Africa, Asia, Europe, Latin America and the Caribbean, Oceania and Northern America. The ISB has worked to better coordinate and communicate biometeorological research, collaborating strategically with international partners to achieve this objective.


Subject(s)
Meteorology , Societies, Scientific/trends , Congresses as Topic , Humans , Internationality , Periodicals as Topic
4.
Int J Biometeorol ; 59(9): 1237-52, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25409871

ABSTRACT

Germination is considered one of the important phenological stages that are influenced by environmental factors, with timing and abundance determining plant establishment and recruitment. This study investigates the influence of temperature, soil moisture and light on the germination phenology of six Eucalyptus species from two co-occurring groups of three species representing warm-dry and cool-moist sclerophyll forests. Data from germination experiments were used to calibrate the germination module of the mechanistic model TACA-GEM, to evaluate germination phenology under a range of climate change scenarios. With the exception of E. polyanthemos, the optimal niche for all species was characterised by cool-moist stratification, low light, cool temperatures and high soil moisture. Model results indicated that of the warm-dry species, Eucalyptus microcarpa exhibited greater germination and establishment under projected changes of warmer drier conditions than its co-occurring species Eucalyptus polyanthemos and Eucalyptus tricarpa which suggests that E. microcarpa could maintain its current distribution under a warmer and drier climate in southeastern Australia. Among the cool-moist species, Eucalyptus radiata was the only species that established under projected climate change of the 2080s but at such a low probability that its persistence compared to Eucalyptus obliqua and Eucalyptus sieberi cannot be posited. For all cool-moist species, germination did not benefit from the phenological shifts they displayed. This study successfully demonstrated environmental effects on germination phenology and how a shift in climate can influence the timing and success of recruitment.


Subject(s)
Climate Change , Eucalyptus/growth & development , Germination , Humidity , Light , Seasons , Soil , Species Specificity , Temperature , Victoria , Water
5.
Int J Biometeorol ; 58(4): 427-442, 2014 May.
Article in English | MEDLINE | ID: mdl-24170140

ABSTRACT

Growth is one of the most important phenological cycles in a plant's life. Higher growth rates increase the competitive ability, survival and recruitment and can provide a measure of a plant's adaptive capacity to climate variability and change. This study identified the growth relationship of six Eucalyptus species to variations in temperature, soil moisture availability, photoperiod length and air humidity over 12 months. The six species represent two naturally co-occurring groups of three species each representing warm-dry and the cool-moist sclerophyll forests, respectively. Warm-dry eucalypts were found to be more tolerant of higher temperatures and lower air humidity than the cool-moist eucalypts. Within groups, species-specific responses were detected with Eucalyptus microcarpa having the widest phenological niche of the warm-dry species, exhibiting greater resistance to high temperature and lower air humidity. Temperature dependent photoperiodic responses were exhibited by all the species except Eucalyptus tricarpa and Eucalyptus sieberi, which were able to maintain growth as photoperiod shortened but temperature requirements were fulfilled. Eucalyptus obliqua exhibited a flexible growth rate and tolerance to moisture limitation which enables it to maintain its growth rate as water availability changes. The wider temperature niche exhibited by E. sieberi compared with E. obliqua and Eucalyptus radiata may improve its competitive ability over these species where winters are warm and moisture does not limit growth. With climate change expected to result in warmer and drier conditions in south-east Australia, the findings of this study suggest all cool-moist species will likely suffer negative effects on growth while the warm-dry species may still maintain current growth rates. Our findings highlight that climate driven shifts in growth phenology will likely occur as climate changes and this may facilitate changes in tree communities by altering inter-specific competition.


Subject(s)
Eucalyptus/growth & development , Adaptation, Physiological , Australia , Humidity , Photoperiod , Soil/chemistry , Species Specificity , Temperature , Water/analysis
6.
PLoS One ; 8(10): e75514, 2013.
Article in English | MEDLINE | ID: mdl-24098389

ABSTRACT

Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically supported.


Subject(s)
Earth, Planet , Ecological and Environmental Phenomena , Animals , Aquatic Organisms , Classification , Climate , Climate Change , Seasons , Statistics as Topic
7.
Int J Biometeorol ; 55(6): 879-904, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21553335

ABSTRACT

Self-Organising Map (SOM) clustering methods applied to the monthly and seasonal averaged flowering intensity records of eight Eucalypt species are shown to successfully quantify, visualise and model synchronisation of multivariate time series. The SOM algorithm converts complex, nonlinear relationships between high-dimensional data into simple networks and a map based on the most likely patterns in the multiplicity of time series that it trains. Monthly- and seasonal-based SOMs identified three synchronous species groups (clusters): E. camaldulensis, E. melliodora, E. polyanthemos; E. goniocalyx, E. microcarpa, E. macrorhyncha; and E. leucoxylon, E. tricarpa. The main factor in synchronisation (clustering) appears to be the season in which flowering commences. SOMs also identified the asynchronous relationship among the eight species. Hence, the likelihood of the production, or not, of hybrids between sympatric species is also identified. The SOM pattern-based correlation values mirror earlier synchrony statistics gleaned from Moran correlations obtained from the raw flowering records. Synchronisation of flowering is shown to be a complex mechanism that incorporates all the flowering characteristics: flowering duration, timing of peak flowering, of start and finishing of flowering, as well as possibly specific climate drivers for flowering. SOMs can accommodate for all this complexity and we advocate their use by phenologists and ecologists as a powerful, accessible and interpretable tool for visualisation and clustering of multivariate time series and for synchrony studies.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Eucalyptus/physiology , Algorithms , Climate Change , Cluster Analysis , Data Collection , Eucalyptus/classification , Eucalyptus/growth & development , Neural Networks, Computer , Seasons , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...