Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immune Based Ther Vaccines ; 2(1): 6, 2004 May 14.
Article in English | MEDLINE | ID: mdl-15144560

ABSTRACT

BACKGROUND: Polymorphisms in several genes (NOD2, MDR1, SLC22A4) have been associated with susceptibility to Crohn's disease. Identification of the remaining Crohn's susceptibility genes is essential for the development of disease-specific targets for immunotherapy. Using gene expression analysis, we identified a differentially expressed gene on 5q33, the colony stimulating factor 1 receptor (CSF1R) gene, and hypothesized that it is a Crohn's susceptibility gene. The CSF1R gene is involved in monocyte to macrophage differentiation and in innate immunity. METHODS: Patients provided informed consent prior to entry into the study as approved by the Institutional Review Board at LSU Health Sciences Center. We performed forward and reverse sequencing of genomic DNA from 111 unrelated patients with Crohn's disease and 108 controls. We also stained paraffin-embedded, ileal and colonic tissue sections from patients with Crohn's disease and controls with a polyclonal antibody raised against the human CSF1R protein. RESULTS: A single nucleotide polymorphism (A2033T) near a Runx1 binding site in the eleventh intron of the colony stimulating factor 1 receptor was identified. The T allele of this single nucleotide polymorphism occurred in 27% of patients with Crohn's disease but in only 13% of controls (X2 = 6.74, p < 0.01, odds ratio (O.R.) = 2.49, 1.23 < O.R. < 5.01). Using immunohistochemistry, positive staining with a polyclonal antibody to CSF1R was observed in the superficial epithelium of ileal and colonic tissue sections. CONCLUSIONS: We conclude that the colony stimulating factor receptor 1 gene may be a susceptibility gene for Crohn's disease.

2.
Hum Genet ; 110(1): 95-7, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11810303

ABSTRACT

Recently, mutations in USH1C were shown to be associated with Usher syndrome type IC, and a mutation (216G-->A) in exon 3 was identified in an Acadian family. In addition, a 45-bp variable number of tandem repeat (VNTR) polymorphism was found in intron 5 of USH1C. Polymerase chain reaction amplification of the VNTR region and restriction enzyme analysis of exon 3 of USH1C showed that, of 44 Acadian patients, 43 were homozygous for both the 216G-->A mutation and nine repeats of the VNTR, with a "t" nucleotide replacing a "g" nucleotide at the 8th position of both the eighth and ninth copies of the repeat, viz., 9VNTR(t,t). The remaining Acadian patient was reported to be a compound heterozygote for 216G-->A/9VNTR(t,t) and 238-239insC, a USH1C mutation that has been found in other populations. These data demonstrate that the 9VNTR(t,t) allele is in complete linkage disequilibrium with the 216G-->A mutation in the Acadian population. Among 82 Acadian controls, one was heterozygous for 216G-->A/9VNTR(t,t). The 238-239insC mutation was not found in Acadian controls. Analysis of 340 non-Acadian normal samples showed the presence of a 9-repeat VNTR allele in one Hispanic sample. This individual had neither the 216G-->A mutation nor the Acadian VNTR(t,t) structure. These results suggest that the 216G-->A mutation and the 9VNTR(t,t) allele are restricted to the Acadians and are in complete linkage disequilibrium.


Subject(s)
Carrier Proteins/genetics , Linkage Disequilibrium , Minisatellite Repeats , Polymorphism, Single Nucleotide , Adaptor Proteins, Signal Transducing , Base Sequence , Cell Cycle Proteins , Cytoskeletal Proteins , Ethnicity/genetics , Hearing Disorders/genetics , Humans , Louisiana , Reference Values , Retinal Degeneration/genetics , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...