Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Osteoporos Int ; 32(11): 2371-2375, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34080044

ABSTRACT

The trabecular bone score (TBS) is an indirect measure of vertebral bone microarchitecture. Our objective was to examine the effect of testosterone treatment on TBS. One hundred and ninety-seven hypogonadal men were randomized to testosterone or placebo. After 12 months, there was no difference in the changes in TBS by randomized group. INTRODUCTION: In the Bone Trial of the Testosterone Trials, testosterone treatment increased trabecular volumetric bone mineral density (vBMD) and increased estimated bone strength as determined by finite element analysis. The trabecular bone score (TBS) is an indirect measure of vertebral bone microarchitecture. TBS predicts fracture independent of lumbar spine areal (a) BMD. The objective of this study was to examine the effect of testosterone treatment on TBS compared to its effects on vBMD and aBMD. METHODS: Two hundred and eleven men were enrolled in the Bone Trial of the Testosterone Trials. Of these, 197 men had 2 repeat TBS and vBMD measurements; 105 men were allocated to receive testosterone, and 92 men to placebo for 1 year. TBS, aBMD, and vBMD were assessed at baseline and month 12. RESULTS: There was no difference in the percent change in TBS by randomized group: 1.6% (95% confidence intervals (CI) 0.2-3.9) in the testosterone group and 1.4% (95% CI -0.2, 3.1) in the placebo group. In contrast, vBMD increased by 6% (95% CI 4.5-7.5) in the testosterone group compared to 0.4% (95% CI -1.65-0.88) in the placebo groups. CONCLUSIONS: TBS is not clinically useful in monitoring the 1-year effect of testosterone treatment on bone structure in older hypogonadal men.


Subject(s)
Cancellous Bone , Testosterone , Absorptiometry, Photon , Aged , Bone Density , Cancellous Bone/diagnostic imaging , Humans , Lumbar Vertebrae , Male
2.
Osteoporos Int ; 32(2): 261-269, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32748310

ABSTRACT

In a population-based study, we found that computed tomography (CT)-based bone density and strength measures from the thoracic spine predicted new vertebral fracture as well as measures from the lumbar spine, suggesting that CT scans at either the thorax or abdominal regions are useful to assess vertebral fracture risk. INTRODUCTION: Prior studies have shown that computed tomography (CT)-based lumbar bone density and strength measurements predict incident vertebral fracture. This study investigated whether CT-based bone density and strength measurements from the thoracic spine predict incident vertebral fracture and compared the performance of thoracic and lumbar bone measurements to predict incident vertebral fracture. METHODS: This case-control study of community-based men and women (age 74.6 ± 6.6) included 135 cases with incident vertebral fracture at any level and 266 age- and sex-matched controls. We used baseline CT scans to measure integral and trabecular volumetric bone mineral density (vBMD) and vertebral strength (via finite element analysis, FEA) at the T8 and L2 levels. Association between these measurements and vertebral fracture was determined by using conditional logistic regression. Sensitivity and specificity for predicting incident vertebral fracture were determined for lumbar spine and thoracic bone measurements. RESULTS: Bone measurements from T8 and L2 predicted incident vertebral fracture equally well, regardless of fracture location. Specifically, for predicting vertebral fracture at any level, the odds ratio (per 1-SD decrease) for the vBMD and strength measurements at L2 and T8 ranged from 2.0 to 2.7 (p < 0.0001) and 1.8 to 2.8 (p < 0.0001), respectively. Results were similar when predicting fracture only in the thoracic versus the thoracolumbar spine. Lumbar and thoracic spine bone measurements had similar sensitivity and specificity for predicting incident vertebral fracture. CONCLUSION: These findings indicated that like those from the lumbar spine, CT-based bone density and strength measurements from the thoracic spine may be useful for identifying individuals at high risk for vertebral fracture.


Subject(s)
Bone Density , Spinal Fractures , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/injuries , Male , Spinal Fractures/diagnostic imaging , Spinal Fractures/epidemiology , Spinal Fractures/etiology , Tomography, X-Ray Computed
3.
Osteoporos Int ; 31(6): 1025-1048, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32335687

ABSTRACT

The surgeon general of the USA defines osteoporosis as "a skeletal disorder characterized by compromised bone strength, predisposing to an increased risk of fracture." Measuring bone strength, Biomechanical Computed Tomography analysis (BCT), namely, finite element analysis of a patient's clinical-resolution computed tomography (CT) scan, is now available in the USA as a Medicare screening benefit for osteoporosis diagnostic testing. Helping to address under-diagnosis of osteoporosis, BCT can be applied "opportunistically" to most existing CT scans that include the spine or hip regions and were previously obtained for an unrelated medical indication. For the BCT test, no modifications are required to standard clinical CT imaging protocols. The analysis provides measurements of bone strength as well as a dual-energy X-ray absorptiometry (DXA)-equivalent bone mineral density (BMD) T-score at the hip and a volumetric BMD of trabecular bone at the spine. Based on both the bone strength and BMD measurements, a physician can identify osteoporosis and assess fracture risk (high, increased, not increased), without needing confirmation by DXA. To help introduce BCT to clinicians and health care professionals, we describe in this review the currently available clinical implementation of the test (VirtuOst), its application for managing patients, and the underlying supporting evidence; we also discuss its main limitations and how its results can be interpreted clinically. Together, this body of evidence supports BCT as an accurate and convenient diagnostic test for osteoporosis in both sexes, particularly when used opportunistically for patients already with CT. Biomechanical Computed Tomography analysis (BCT) uses a patient's CT scan to measure both bone strength and bone mineral density at the hip or spine. Performing at least as well as DXA for both diagnosing osteoporosis and assessing fracture risk, BCT is particularly well-suited to "opportunistic" use for the patient without a recent DXA who is undergoing or has previously undergone CT testing (including hip or spine regions) for an unrelated medical condition.


Subject(s)
Osteoporosis , Tomography, X-Ray Computed , Absorptiometry, Photon , Aged , Bone Density , Female , Humans , Male , Medicare , Osteoporosis/diagnostic imaging , United States
4.
Osteoporos Int ; 31(5): 921-929, 2020 May.
Article in English | MEDLINE | ID: mdl-31802158

ABSTRACT

This first-in-human study of AGN1 LOEP demonstrated that this minimally-invasive treatment durably increased aBMD in femurs of osteoporotic postmenopausal women. AGN1 resorption was coupled with new bone formation by 12 weeks and that new bone was maintained for at least 5-7 years resulting in substantially increased FEA-estimated femoral strength. INTRODUCTION: This first-in-human study evaluated feasibility, safety, and in vivo response to treating proximal femurs of postmenopausal osteoporotic women with a minimally-invasive local osteo-enhancement procedure (LOEP) to inject a resorbable triphasic osteoconductive implant material (AGN1). METHODS: This prospective cohort study enrolled 12 postmenopausal osteoporotic (femoral neck T-score ≤ - 2.5) women aged 56 to 89 years. AGN1 LOEP was performed on left femurs; right femurs were untreated controls. Subjects were followed-up for 5-7 years. Outcomes included adverse events, proximal femur areal bone mineral density (aBMD), AGN1 resorption, and replacement with bone by X-ray and CT, and finite element analysis (FEA) estimated hip strength. RESULTS: Baseline treated and control femoral neck aBMD was equivalent. Treated femoral neck aBMD increased by 68 ± 22%, 59 ± 24%, and 58 ± 27% over control at 12 and 24 weeks and 5-7 years, respectively (p < 0.001, all time points). Using conservative assumptions, FEA-estimated femoral strength increased by 41%, 37%, and 22% at 12 and 24 weeks and 5-7 years, respectively (p < 0.01, all time points). Qualitative analysis of X-ray and CT scans demonstrated that AGN1 resorption and replacement with bone was nearly complete by 24 weeks. By 5-7 years, AGN1 appeared to be fully resorbed and replaced with bone integrated with surrounding trabecular and cortical bone. No procedure- or device-related serious adverse events (SAEs) occurred. CONCLUSIONS: Treating femurs of postmenopausal osteoporotic women with AGN1 LOEP results in a rapid, durable increase in aBMD and femoral strength. These results support the use and further clinical study of this approach in osteoporotic patients at high risk of hip fracture.


Subject(s)
Bone Density , Hip Fractures , Absorptiometry, Photon , Aged , Aged, 80 and over , Female , Femur/diagnostic imaging , Femur/surgery , Femur Neck/surgery , Humans , Middle Aged , Postmenopause , Prospective Studies
5.
Osteoporos Int ; 30(2): 323-331, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30306225

ABSTRACT

Prior studies show vertebral strength from computed tomography-based finite element analysis may be associated with vertebral fracture risk. We found vertebral strength had a strong association with new vertebral fractures, suggesting that vertebral strength measures identify those at risk for vertebral fracture and may be a useful clinical tool. INTRODUCTION: We aimed to determine the association between vertebral strength by quantitative computed tomography (CT)-based finite element analysis (FEA) and incident vertebral fracture (VF). In addition, we examined sensitivity and specificity of previously proposed diagnostic thresholds for fragile bone strength and low BMD in predicting VF. METHODS: In a case-control study, 26 incident VF cases (13 men, 13 women) and 62 age- and sex-matched controls aged 50 to 85 years were selected from the Framingham multi-detector computed tomography cohort. Vertebral compressive strength, integral vBMD, trabecular vBMD, CT-based BMC, and CT-based aBMD were measured from CT scans of the lumbar spine. RESULTS: Lower vertebral strength at baseline was associated with an increased risk of new or worsening VF after adjusting for age, BMI, and prevalent VF status (odds ratio (OR) = 5.2 per 1 SD decrease, 95% CI 1.3-19.8). Area under receiver operating characteristic (ROC) curve comparisons revealed that vertebral strength better predicted incident VF than CT-based aBMD (AUC = 0.804 vs. 0.715, p = 0.05) but was not better than integral vBMD (AUC = 0.815) or CT-based BMC (AUC = 0.794). Additionally, proposed fragile bone strength thresholds trended toward better sensitivity for identifying VF than that of aBMD-classified osteoporosis (0.46 vs. 0.23, p = 0.09). CONCLUSION: This study shows an association between vertebral strength measures and incident vertebral fracture in men and women. Though limited by a small sample size, our findings also suggest that bone strength estimates by CT-based FEA provide equivalent or better ability to predict incident vertebral fracture compared to CT-based aBMD. Our study confirms that CT-based estimates of vertebral strength from FEA are useful for identifying patients who are at high risk for vertebral fracture.


Subject(s)
Osteoporosis/diagnostic imaging , Osteoporotic Fractures/diagnostic imaging , Spinal Fractures/diagnostic imaging , Aged , Aged, 80 and over , Bone Density/physiology , Case-Control Studies , Female , Finite Element Analysis , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/physiopathology , Male , Middle Aged , Osteoporosis/physiopathology , Osteoporotic Fractures/physiopathology , Predictive Value of Tests , Radiographic Image Interpretation, Computer-Assisted/methods , Risk Assessment/methods , Sensitivity and Specificity , Spinal Fractures/physiopathology , Tomography, X-Ray Computed/methods
6.
J Biomech ; 48(15): 4142-4148, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26522622

ABSTRACT

High-resolution finite element models derived from micro-computed tomography images are often used to study the effects of trabecular microarchitecture and loading mode on tissue stress, but the degree to which existing finite element methods correctly predict the location of tissue failure is not well characterized. In the current study, we determined the relationship between the location of highly strained tissue, as determined from high-resolution finite element models, and the location of tissue microdamage, as determined from three-dimensional fluoroscopy imaging, which was performed after the microdamage was generated in-vitro by mechanical testing. Fourteen specimens of human vertebral cancellous bone were assessed (8 male donors, 2 female donors, 47-78 years of age). Regions of stained microdamage, were 50-75% more likely to form in highly strained tissue (principal strains exceeding 0.4%) than elsewhere, and generally the locations of the regions of microdamage were significantly correlated (p<0.05) with the locations of highly strained tissue. This spatial correlation was stronger for the largest regions of microdamage (≥1,000,000µm(3) in volume); 87% of large regions of microdamage were located near highly strained tissue. Together, these findings demonstrate that there is a strong correlation between regions of microdamage and regions of high strain in human cancellous bone, particularly for the biomechanically more important large instances of microdamage.


Subject(s)
Models, Biological , Spine/pathology , Spine/physiopathology , Aged , Female , Finite Element Analysis , Humans , Male , Middle Aged , Spine/diagnostic imaging , Stress, Mechanical , X-Ray Microtomography
7.
Osteoporos Int ; 25(2): 559-66, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23925651

ABSTRACT

UNLABELLED: We examined how spinal location affects the relationships between quantitative computed tomography (QCT)-based bone measurements and prevalent vertebral fractures. Upper spine (T4-T10) fractures appear to be more strongly related to bone measures than lower spine (T11-L4) fractures, while lower spine measurements are at least as strongly related to fractures as upper spine measurements. INTRODUCTION: Vertebral fracture (VF), a common injury in older adults, is most prevalent in the mid-thoracic (T7-T8) and thoracolumbar (T12-L1) areas of the spine. However, measurements of bone mineral density (BMD) are typically made in the lumbar spine. It is not clear how the associations between bone measurements and VFs are affected by the spinal locations of both bone measurements and VF. METHODS: A community-based case-control study includes 40 cases with moderate or severe prevalent VF and 80 age- and sex-matched controls. Measures of vertebral BMD, strength (estimated by finite element analysis), and factor of risk (load:strength ratio) were determined based on QCT scans at the L3 and T10 vertebrae. Associations were determined between bone measures and prevalent VF occurring at any location, in the upper spine (T4-T10), or in the lower spine (T11-L4). RESULTS: Prevalent VF at any location was significantly associated with bone measures, with odds ratios (ORs) generally higher for measurements made at L3 (ORs = 1.9-3.9) than at T10 (ORs = 1.5-2.4). Upper spine fracture was associated with these measures at both T10 and L3 (ORs = 1.9-8.2), while lower spine fracture was less strongly associated (ORs = 1.0-2.4) and only reached significance for volumetric BMD measures at L3. CONCLUSIONS: Closer proximity between the locations of bone measures and prevalent VF does not strengthen associations between bone measures and fracture. Furthermore, VF etiology may vary by region, with VFs in the upper spine more strongly related to skeletal fragility.


Subject(s)
Lumbar Vertebrae/injuries , Osteoporotic Fractures/diagnostic imaging , Spinal Fractures/diagnostic imaging , Thoracic Vertebrae/injuries , Aged , Bone Density/physiology , Case-Control Studies , Female , Finite Element Analysis , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/physiopathology , Male , Middle Aged , Osteoporotic Fractures/pathology , Osteoporotic Fractures/physiopathology , Spinal Fractures/pathology , Spinal Fractures/physiopathology , Thoracic Vertebrae/diagnostic imaging , Thoracic Vertebrae/physiopathology , Tomography, X-Ray Computed/methods
8.
Osteoporos Int ; 24(4): 1379-88, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22810918

ABSTRACT

UNLABELLED: The study goal was to compare simple two-dimensional (2D) analyses of bone strength using dual energy x-ray absorptiometry (DXA) data to more sophisticated three-dimensional (3D) finite element analyses using quantitative computed tomography (QCT) data. DXA- and QCT-derived femoral neck geometry, simple strength indices, and strength estimates were well correlated. INTRODUCTION: Simple 2D analyses of bone strength can be done with DXA data and applied to large data sets. We compared 2D analyses to 3D finite element analyses (FEA) based on QCT data. METHODS: Two hundred thirteen women participating in the Study of Women's Health Across the Nation (SWAN) received hip DXA and QCT scans. DXA BMD and femoral neck diameter and axis length were used to estimate geometry for composite bending (BSI) and compressive strength (CSI) indices. These and comparable indices computed by Hip Structure Analysis (HSA) on the same DXA data were compared to indices using QCT geometry. Simple 2D engineering simulations of a fall impacting on the greater trochanter were generated using HSA and QCT femoral neck geometry; these estimates were benchmarked to a 3D FEA of fall impact. RESULTS: DXA-derived CSI and BSI computed from BMD and by HSA correlated well with each other (R=0.92 and 0.70) and with QCT-derived indices (R=0.83-0.85 and 0.65-0.72). The 2D strength estimate using HSA geometry correlated well with that from QCT (R=0.76) and with the 3D FEA estimate (R=0.56). CONCLUSIONS: Femoral neck geometry computed by HSA from DXA data corresponds well enough to that from QCT for an analysis of load stress in the larger SWAN data set. Geometry derived from BMD data performed nearly as well. Proximal femur breaking strength estimated from 2D DXA data is not as well correlated with that derived by a 3D FEA using QCT data.


Subject(s)
Femur Neck/physiology , Postmenopause/physiology , Absorptiometry, Photon/methods , Adult , Bone Density/physiology , Compressive Strength/physiology , Female , Femur Neck/anatomy & histology , Femur Neck/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Longitudinal Studies , Middle Aged , Stress, Mechanical , Tomography, X-Ray Computed/methods , Weight-Bearing/physiology
9.
Bone ; 51(1): 28-37, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22507299

ABSTRACT

The number and size of resorption cavities in cancellous bone are believed to influence rates of bone loss, local tissue stress and strain and potentially whole bone strength. Traditional two-dimensional approaches to measuring resorption cavities in cancellous bone report the percent of the bone surface covered by cavities or osteoclasts, but cannot measure cavity number or size. Here we use three-dimensional imaging (voxel size 0.7×0.7×5.0 µm) to characterize resorption cavity location, number and size in human vertebral cancellous bone from nine elderly donors (7 male, 2 female, ages 47-80 years). Cavities were 30.10 ± 8.56 µm in maximum depth, 80.60 ± 22.23∗10(3) µm(2) in surface area and 614.16 ± 311.93∗10(3) µm(3) in volume (mean ± SD). The average number of cavities per unit tissue volume (N.Cv/TV) was 1.25 ± 0.77 mm(-3). The ratio of maximum cavity depth to local trabecular thickness was 30.46 ± 7.03% and maximum cavity depth was greater on thicker trabeculae (p<0.05, r(2)=0.14). Half of the resorption cavities were located entirely on nodes (the intersection of two or more trabeculae) within the trabecular structure. Cavities that were not entirely on nodes were predominately on plate-like trabeculae oriented in the cranial-caudal (longitudinal) direction. Cavities on plate-like trabeculae were larger in maximum cavity depth, cavity surface area and cavity volume than cavities on rod-like trabeculae (p<0.05). We conclude from these findings that cavity size and location are related to local trabecular microarchitecture.


Subject(s)
Bone Remodeling/physiology , Bone Resorption/physiopathology , Aged , Aged, 80 and over , Biomechanical Phenomena , Female , Humans , Imaging, Three-Dimensional , Lumbar Vertebrae/physiology , Lumbar Vertebrae/physiopathology , Male , Middle Aged
10.
Bone ; 50(6): 1281-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22426306

ABSTRACT

The amount of bone turnover in the body has been implicated as a factor that can influence fracture risk and bone strength. Here we test the idea that remodeling cavities promote local tissue failure by determining if microscopic tissue damage (microdamage) caused by controlled loading in vitro is more likely to form near resorption cavities. Specimens of human vertebral cancellous bone (L4, 7 male and 2 female, age 70±10, mean±SD) were loaded in compression to the yield point, stained for microscopic tissue damage and submitted to three-dimensional fluorescent imaging using serial milling (image voxel size 0.7×0.7×5.0 µm). We found the resulting damage volume per bone volume (DV/BV) was correlated with percent eroded surface (p<0.01, r(2)=0.65), demonstrating that whole specimen measures of resorption cavities and microdamage are related. Locations of microdamage were more than two times as likely to have a neighboring resorption cavity than randomly selected sites without microdamage (relative risk 2.39, 95% confidence interval of relative risk: 2.09-2.73), indicating a spatial association between resorption cavities and microdamage at the local level. Individual microdamage sites were 48,700 (40,100; 62,700) µm(3) in size (median, 25th and 75th percentiles). That microdamage was associated with resorption cavities when measured at the whole specimen level as well as at the local level provides strong evidence that resorption cavities play a role in mechanical failure processes of cancellous bone and therefore have the potential to influence resistance to clinical fracture.


Subject(s)
Fractures, Compression/physiopathology , Spinal Injuries/physiopathology , Spine/physiopathology , Aged , Aged, 80 and over , Biomechanical Phenomena , Bone Remodeling/physiology , Bone Resorption/pathology , Bone Resorption/physiopathology , Compressive Strength , Female , Fractures, Compression/pathology , Humans , Imaging, Three-Dimensional , In Vitro Techniques , Male , Middle Aged , Spinal Injuries/pathology , Spine/pathology , Stress, Mechanical
11.
Osteoporos Int ; 23(1): 155-62, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22057550

ABSTRACT

UNLABELLED: Using combined dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography, we demonstrate that men matched with women for femoral neck (FN) areal bone mineral density (aBMD) have lower volumetric BMD (vBMD), higher bone cross-sectional area, and relatively similar values for finite element (FE)-derived bone strength. INTRODUCTION: aBMD by DXA is widely used to identify patients at risk for osteoporotic fractures. aBMD is influenced by bone size (i.e., matched for vBMD, larger bones have higher aBMD), and increasing evidence indicates that absolute aBMD predicts a similar risk of fracture in men and women. Thus, we sought to define the relationships between FN aBMD (assessed by DXA) and vBMD, bone size, and FE-derived femoral strength obtained from quantitative computed tomography scans in men versus women. METHODS: We studied men and women aged 40 to 90 years and not on osteoporosis medications. RESULTS: In 114 men and 114 women matched for FN aBMD, FN total cross-sectional area was 38% higher (P < 0.0001) and vBMD was 16% lower (P < 0.0001) in the men. FE models constructed in a subset of 28 women and 28 men matched for FN aBMD showed relatively similar values for bone strength and the load-to-strength ratio in the two groups. CONCLUSIONS: In this cohort of young and old men and women from Rochester, MN, USA who are matched by FN aBMD, because of the offsetting effects of bone size and vBMD, femoral strength and the load-to-strength ratio tended to be relatively similar across the sexes.


Subject(s)
Bone Density/physiology , Femur Neck/physiology , Absorptiometry, Photon , Adult , Aged , Aged, 80 and over , Aging/pathology , Aging/physiology , Anthropometry/methods , Female , Femur Neck/anatomy & histology , Femur Neck/diagnostic imaging , Humans , Male , Middle Aged , Osteoporotic Fractures/pathology , Osteoporotic Fractures/physiopathology , Sex Characteristics , Tomography, X-Ray Computed/methods , Weight-Bearing
12.
Bone ; 42(1): 212-5, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17951125

ABSTRACT

Understanding the three-dimensional distribution of microdamage within trabecular bone may help provide a better understanding of the mechanisms of bone failure. Toward that end, a novel serial milling-based fluorescent imaging system was developed for quantifying microscopic damage in three dimensions throughout cores of trabecular bone. The overall goal for this study was to compare two-dimensional (2D), surface-based measures of microdamage extracted from this new imaging system against those from more conventional histological section analyses. Human vertebral trabecular cores were isolated, stained en bloc with a series of chelating fluorochromes, monotonically loaded, and underwent microdamage quantification via the two methods. Bone area fraction measured by the new system was significantly correlated to that measured by histological point counting (p<0.001, R(2)=0.80). Additionally, the new system produced statistically equivalent (p=0.021) measures of damage fraction (mean+/-SD), Dx.AF=0.047+/-0.021, to that obtained from stereological point counting, Dx.AF=0.048+/-0.017, at a 10% difference level. These results demonstrate that this serial milling-based fluorescent imaging system provides a destructive yet practical alternative to more conventional histologic section analysis in addition to its ability to provide a better understanding of the three-dimensional nature of microdamage.


Subject(s)
Bone Diseases/pathology , Spine/pathology , Fluorescence , Humans , Reproducibility of Results
13.
J Microsc ; 225(Pt 2): 109-17, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17359245

ABSTRACT

We describe a novel automated technique for visualizing the three-dimensional distribution of fluorochrome-labelled components, in which image resolution is uncoupled from specimen size. This method is based on computer numerically controlled milling technology and combines an arrayed imaging technique with fluorescence capabilities. Fluorescent signals are segmented by emission spectra such that multiple fluorochromes present within a single specimen may be reconstructed and visualized individually or as a group. The automated nature of the system minimizes the workload and time involved in image capture and volume reconstruction. As an application, the system was used to image zones of fluorochrome-labelled microdamage within an 8-mm diameter cylinder of trabecular bone at a voxel size of 3 x 3 x 8 microm3. Our reconstruction of this specimen provides a visual map and quantitative measures of the volume of damage present throughout the cylinder, clearly demonstrating the interpretive power afforded by three-dimensional visualization. The three-dimensional nature of this highly automated and adaptable system has the potential to facilitate new diagnostic tools and techniques with application to a wide range of biological and medical research fields.


Subject(s)
Microscopy, Fluorescence/methods , Animals , Automation , Bone and Bones/anatomy & histology , Cattle , Equipment Design , Fluorescent Dyes , Histological Techniques , Imaging, Three-Dimensional , Microscopy, Fluorescence/instrumentation , Staining and Labeling
14.
Bone ; 39(6): 1173-81, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16876493

ABSTRACT

Observations that dual-energy X-ray absorptiometry (DXA) measures of areal bone mineral density cannot completely explain fracture incidence after anti-resorptive treatment have led to renewed interest in bone quality. Bone quality is a vague term but generally refers to the effects of skeletal factors that contribute to bone strength but are not accounted for by measures of bone mass. Because a clinical fracture is ultimately a mechanical event, it follows then that any clinically relevant modification of bone quality must change bone biomechanical performance relative to bone mass. In this perspective, we discuss a framework for assessing the clinically relevant effects of bone quality based on two general concepts: (1) the biomechanical effects of bone quality can be quantified from analysis of the relationship between bone mechanical performance and bone density; and (2) because of its hierarchical nature, biomechanical testing of bone at different physical scales (<1 mm, 1 mm, 1 cm, etc.) can be used to isolate the scale at which the most clinically relevant changes in bone quality occur. As an example, we review data regarding the relationship between the strength and density in excised specimens of trabecular bone and highlight the fact that it is not yet clear how this relationship changes during aging, osteoporosis development, and anti-resorptive treatment. Further study of new and existing data using this framework should provide insight into the role of bone quality in osteoporotic fracture risk.


Subject(s)
Bone and Bones/physiology , Aging/physiology , Biomechanical Phenomena , Bone Density , Bone and Bones/anatomy & histology , Fractures, Bone/etiology , Fractures, Bone/physiopathology , Humans
15.
Calcif Tissue Int ; 73(2): 147-52, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14565596

ABSTRACT

Basic fibroblast growth factor (bFGF) is a potent mitogen and acts as an autocrine/paracrine factor for osteoblasts. Long-term administration of bFGF in vivo increases osteoblast number and stimulates matrix formation, but induces hypophosphatemia and impairs matrix mineralization. The goal of this study was to examine the interaction between bFGF and low levels of organic phosphate in an effort to better understand the possible long-term therapeutic effects of bFGF. These data show that in vitro administration of bFGF accelerates the calcification process and lowers the phosphate threshold needed for successful bone nodule formation. This correlates well with the observed upregulation of mRNA production for alkaline phosphatase and osteocalcin at day 7. These findings help elucidate the mechanisms of bFGF action on bone marrow stromal cell differentiation and mineralization and indicate that the delay in mineralization observed in vivo may not be caused by decreased phosphate availability alone.


Subject(s)
Bone Marrow Cells/physiology , Calcification, Physiologic/drug effects , Fibroblast Growth Factor 2/pharmacology , Glycerophosphates/metabolism , Alkaline Phosphatase/drug effects , Alkaline Phosphatase/metabolism , Animals , Bone Marrow Cells/cytology , Calcification, Physiologic/physiology , Cell Count , Cells, Cultured , Dose-Response Relationship, Drug , Male , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Stromal Cells/physiology
16.
J Musculoskelet Neuronal Interact ; 2(3): 205-8, 2002 Mar.
Article in English | MEDLINE | ID: mdl-15758434

ABSTRACT

From an engineering perspective, trabecular bone is a highly complex material, being anisotropic with different strengths in tension, compression, and shear and with mechanical properties that vary widely across anatomic sites, and with aging and disease. While mechanical properties depend very much on volume fraction, the role of architecture and tissue material properties remain uncertain. In the context of osteoporosis, there is wide interest in the biomechanical role of architecture since this should lead to improved understanding of the disease and ultimately better diagnosis and drug treatment assessment. This study reviews what is known about architectural changes in trabecular bone associated with age, gender and osteoporosis and the role of these changes in the mechanical properties of bone. Recent development of three-dimensional high-resolution imaging technologies has provided more accurate measures of quantitative metrics of architecture, thereby providing new data and raising questions about earlier conclusions. Focusing on the hip and spine, this literature is synthesized and outstanding issues are identified. In addition, the changing paradigm of biomechanical research on trabecular architecture is addressed. Because of the complexity of the trabecular micromechanics, the prevailing approach to date can be classified as an inverse one, whereby candidate metrics of architecture are developed and tested for efficacy in an empirical trial-and-error fashion. In this approach, the biomechanics is treated only as an assay since it is not used to guide development of the candidate metrics. By contrast, a more forward approach is to study the associated micromechanics using engineering analysis and from that identify the metrics that in theory most affect mechanical properties. The latter approach, facilitated by the new high-resolution imaging techniques and increased computational power, is discussed in an attempt to direct attention to new types of architectural metrics that are independent of bone density and that should improve the ability to explain how age, gender and osteoporosis affect the mechanical properties of trabecular bone.

17.
Tissue Eng ; 8(6): 931-9, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12542939

ABSTRACT

It has been shown that various organ and cell cultures exhibit increased mineral formation with the addition of basic fibroblast growth factor (bFGF) and phosphate ions in the medium. However, to date there has been no attempt to relate the chemical composition of mineral formed in vitro to a measure of its mechanical properties. This information is important for understanding the in vivo mineralization process, the development of in vitro models, and the design of tissue-engineered bone substitutes. In this study we examined the reduced modulus; hardness; and mineral-to-matrix, crystallinity, carbonate-to-mineral, and calcium-to-phosphorus ratios of mineral formed by bFGF-treated rat-derived bone marrow stromal cells in vitro. The cells were treated with 1 or 3 mM beta-glycerophosphate for 3 and 4 weeks. Both mechanical parameters, reduced modulus and hardness, increased with increasing beta-glycerophosphate concentration. The only chemical measure of the mineral composition that exhibited the same dependency was the mineral-to-matrix ratio. The values of crystallinity and carbonate fraction were similar to those for intact cortical bone, but the calcium-to-phosphorus ratio was substantially lower than that of normal bone. These data indicate that the mineral formed by bFGF-treated bone cells is mechanically and chemically different from naturally formed lamellar bone tissue after 4 weeks in culture. These results can be used to improve in vitro models of mineral formation as well as enhance the design of tissue-engineered bone substitutes.


Subject(s)
Bone Marrow Cells/metabolism , Extracellular Matrix/chemistry , Fibroblast Growth Factor 2/metabolism , Stromal Cells/metabolism , Animals , Calcium/metabolism , Extracellular Matrix/metabolism , Hardness , Hardness Tests , Phosphorus/metabolism , Rats , Spectroscopy, Fourier Transform Infrared
18.
J Theor Biol ; 212(2): 211-21, 2001 Sep 21.
Article in English | MEDLINE | ID: mdl-11531386

ABSTRACT

It is well established that bones functionally adapt by mechanisms that control tissue density, whole bone geometry, and trabecular orientation. In this study, we propose the existence of another such powerful mechanism, namely, trabecular eccentricity, i.e. non-central placement of trabecular bone within a cortical envelope. In the human femoral neck, trabecular eccentricity results in a thicker cortical shell on the inferior than superior aspect. In an overall context of expanding understanding of bone adaptation, the goal of this study was to demonstrate the biomechanical significance of, and provide a mechanistic explanation for, the relationship between trabecular eccentricity and stresses in the human femoral neck. Using composite beam theory, we showed that the biomechanical effects of eccentricity during a habitual loading situation were to increase the stress at the superior aspect of the neck and decrease the stress at the inferior aspect, resulting in an overall protective effect. Further, increasing eccentricity had a stress-reducing effect equivalent to that of increasing cortical thickness or increasing trabecular modulus. We conclude that an asymmetric placement of trabecular bone within a cortical bone envelope represents yet another mechanism by which whole bones can adapt to mechanical demands.


Subject(s)
Adaptation, Physiological , Femur Neck/growth & development , Biomechanical Phenomena , Humans , Models, Biological
19.
Annu Rev Biomed Eng ; 3: 307-33, 2001.
Article in English | MEDLINE | ID: mdl-11447066

ABSTRACT

Trabecular bone is a complex material with substantial heterogeneity. Its elastic and strength properties vary widely across anatomic sites, and with aging and disease. Although these properties depend very much on density, the role of architecture and tissue material properties remain uncertain. It is interesting that the strains at which the bone fails are almost independent of density. Current work addresses the underlying structure-function relations for such behavior, as well as more complex mechanical behavior, such as multiaxial loading, time-dependent failure, and damage accumulation. A unique tool for studying such behavior is the microstructural class of finite element models, particularly the "high-resolution" models. It is expected that with continued progress in this field, substantial insight will be gained into such important problems as osteoporosis, bone fracture, bone remodeling, and design/analysis of bone-implant systems. This article reviews the state of the art in trabecular bone biomechanics, focusing on the mechanical aspects, and attempts to identify important areas of current and future research.


Subject(s)
Bone and Bones/physiology , Aging , Biomechanical Phenomena , Bone Density , Bone and Bones/chemistry , Bone and Bones/cytology , Elasticity , Humans , Image Processing, Computer-Assisted
20.
Spine (Phila Pa 1976) ; 26(14): 1547-54, 2001 Jul 15.
Article in English | MEDLINE | ID: mdl-11462084

ABSTRACT

STUDY DESIGN: The biomechanical behavior of a single lumbar vertebral body after various surgical treatments with acrylic vertebroplasty was parametrically studied using finite-element analysis. OBJECTIVES: To provide a theoretical framework for understanding and optimizing the biomechanics of vertebroplasty. Specifically, to investigate the effects of volume and distribution of bone cement on stiffness recovery of the vertebral body. SUMMARY OF BACKGROUND DATA: Vertebroplasty is a treatment that stabilizes a fractured vertebra by addition of bone cement. However, there is currently no information available on the optimal volume and distribution of the filler material in terms of stiffness recovery of the damaged vertebral body. METHODS: An experimentally calibrated, anatomically accurate finite-element model of an elderly L1 vertebral body was developed. Damage was simulated in each element based on empirical measurements in response to a uniform compressive load. After virtual vertebroplasty (bone cement filling range of 1-7 cm3) on the damaged model, the resulting compressive stiffness of the vertebral body was computed for various spatial distributions of the filling material and different loading conditions. RESULTS: Vertebral stiffness recovery after vertebroplasty was strongly influenced by the volume fraction of the implanted cement. Only a small amount of bone cement (14% fill or 3.5 cm3) was necessary to restore stiffness of the damaged vertebral body to the predamaged value. Use of a 30% fill increased stiffness by more than 50% compared with the predamaged value. Whereas the unipedicular distributions exhibited a comparative stiffness to the bipedicular or posterolateral cases, it showed a medial-lateral bending motion ("toggle") toward the untreated side when a uniform compressive pressure load was applied. CONCLUSION: Only a small amount of bone cement ( approximately 15% volume fraction) is needed to restore stiffness to predamage levels, and greater filling can result in substantial increase in stiffness well beyond the intact level. Such overfilling also renders the system more sensitive to the placement of the cement because asymmetric distributions with large fills can promote single-sided load transfer and thus toggle. These results suggest that large fill volumes may not be the most biomechanically optimal configuration, and an improvement might be achieved by use of lower cement volume with symmetric placement.


Subject(s)
Bone Cements/therapeutic use , Fracture Fixation, Internal/methods , Lumbar Vertebrae/surgery , Spinal Fractures/surgery , Compressive Strength/drug effects , Compressive Strength/physiology , Dose-Response Relationship, Drug , Finite Element Analysis , Lumbar Vertebrae/injuries , Lumbar Vertebrae/physiology , Materials Testing , Models, Biological , Pliability/drug effects , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...