Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36767648

ABSTRACT

The emission inventory, emission factor, and spatial concentration distribution of volatile organic compounds (VOCs) from a petrochemical industry (aromatics plant) were intensively evaluated in this study to elucidate the potential sources of BTX emission and their contribution to ambient concentrations. Five emission groups were quantified through direct measurement and emission models. These data were then used as input for the AERMOD dispersion model for the source apportionment analysis. The source to ambient contribution analysis revealed that a wastewater treatment facility and organic liquid storage tank were major contributors accounting for about 20.6-88.4% and 10.3-75.4% to BTX environmental concentrations, respectively. The highest annual ambient concentrations of benzene (B), toluene (T), and xylenes (X) were predicted as 9.0, 2.8, and 57.9 µg/m3 at the fence line of the plant boundary, respectively. These findings assist policymakers in prioritizing the appropriate control measures to the right source by considering not just the amount released but also their contribution to ambient concentrations. This study suggested that the wastewater treatment unit should be changed to the closed system which will benefit reduction in its emission (45.05%) as well as effectively minimizing ambient VOC concentration by 49.96% compared to its normal operation.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Environmental Monitoring , Air Pollution/prevention & control , Air Pollution/analysis , Toluene/analysis , Volatile Organic Compounds/analysis , China , Ozone/analysis
2.
J Environ Qual ; 51(5): 1016-1034, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35751911

ABSTRACT

Secondary organic aerosol (SOA), a key constituent of fine particulate matter, can be formed through the oxidation of volatile organic compounds (VOCs). However, information on its relevant emission sources remains limited in many cities, especially concerning different types of land use. In this study, VOC concentration in Bangkok Metropolitan Region (BMR), Thailand, was continuously collected for 24 h by 6-L evacuated canister and analyzed by gas chromatography/mass spectrophotometry following USEPA TO15, and the formation of SOA was evaluated through the comprehensive direct measurements and speciation of ambient VOCs. Finally, source contribution of VOCs to SOA formation was characterized using the Positive Matrix Factorization (PMF) model. The results revealed the abundant group of VOCs species in the overall BMR was oxygenated VOCs, accounting for 49.97-57.37%. The SOA formation potential (SOAP) ranged from 1,134.33 to 3,143.74 µg m-3 . The VOC species contributing to the highest SOAP was toluene. Results from the PMF model revealed the dominant emission source of VOCs that greatly contributed to SOA was vehicle exhaust emission. Industrial combustion was the main source of VOC emission contributing to SOA in industrial areas. Sources of fuel evaporation, biomass burning, and cooking were also found in the study areas but in small quantities. The results of this study elucidated that different emission sources of VOCs contribute to SOA with respect to different types of land use. Findings of this study highlight the necessity to identify the contribution of potential emission sources of SOA precursors to effectively manage urban air pollution.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Particulate Matter/analysis , Thailand , Toluene , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL