Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Schizophr Bull ; 50(2): 363-373, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37607340

ABSTRACT

BACKGROUND AND HYPOTHESIS: The emergence of psychosis in ultra-high-risk subjects (UHR) is influenced by gene-environment interactions that rely on epigenetic mechanisms such as microRNAs. However, whether they can be relevant pathophysiological biomarkers of psychosis' onset remains unknown. STUDY DESIGN: We present a longitudinal study of microRNA expression, measured in plasma by high-throughput sequencing at baseline and follow-up, in a prospective cohort of 81 UHR, 35 of whom developed psychosis at follow-up (converters). We combined supervised machine learning and differential graph analysis to assess the relative weighted contribution of each microRNA variation to the difference in outcome and identify outcome-specific networks. We then applied univariate models to the resulting microRNA variations common to both strategies, to interpret them as a function of demographic and clinical covariates. STUDY RESULTS: We identified 207 microRNA variations that significantly contributed to the classification. The differential network analysis found 276 network-specific correlations of microRNA variations. The combination of both strategies identified 25 microRNAs, whose gene targets were overrepresented in cognition and schizophrenia genome-wide association studies findings. Interpretable univariate models further supported the relevance of miR-150-5p and miR-3191-5p variations in psychosis onset, independent of age, sex, cannabis use, and medication. CONCLUSIONS: In this first longitudinal study of microRNA variation during conversion to psychosis, we combined 2 methodologically independent data-driven strategies to identify a dynamic epigenetic signature of the emergence of psychosis that is pathophysiologically relevant.


Subject(s)
MicroRNAs , Psychotic Disorders , Humans , Longitudinal Studies , MicroRNAs/genetics , Genome-Wide Association Study , Prospective Studies , Psychotic Disorders/genetics
2.
Nutrients ; 15(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37432345

ABSTRACT

Alterations in membrane lipids are reported in schizophrenia. However, no conclusion can be drawn regarding the extended and predictive value of these alterations in persons at ultra-high risk of psychosis (UHR). Recent studies suggested that sterols' impact on psychiatric disorders was underestimated. Here, we simultaneously explored sterols, fatty acids (FA), and phospholipids (PL) in UHR persons for the first time. We analysed erythrocyte membrane lipids in 61 UHR persons, including 29 who later converted to psychosis (UHR-C) and 32 who did not (UHC-NC). We used gas chromatography for FA and liquid chromatography tandem with mass spectrometry for sterols and phospholipids. Among UHR individuals, elevated baseline membrane linoleic acid level was associated with conversion to psychosis (26.1% vs. 60.5%, p = 0.02). Combining sterols, FA, and PL membrane composition improved the prediction of psychosis onset (AUC = 0.73). This is the first report showing that membrane sterol participates, with other membrane lipids, in modulating the risk of psychosis. It suggests that membrane lipids could be used as biomarkers for personalised medicine in UHR patients.


Subject(s)
Phytosterols , Psychotic Disorders , Humans , Membrane Lipids , Gas Chromatography-Mass Spectrometry , Psychotic Disorders/diagnosis , Sterols , Phospholipids , Fatty Acids , Biomarkers
4.
Schizophrenia (Heidelb) ; 8(1): 110, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36481661

ABSTRACT

Schizophrenia is highly heritable and aggregating in families, but genetics alone does not exclusively explain the pathogenesis. Many risk factors, including childhood trauma, viral infections, migration, and the use of cannabis, are associated with schizophrenia. Adolescence seems to be the critical period where symptoms of the disease manifest. This work focuses on studying an epigenetic regulatory mechanism (the role of DNA methylation) and its interaction with mRNA expression during development, with a particular emphasis on adolescence. The presumptions regarding the role of aberrant neurodevelopment in schizophrenia were tested in the Methyl-Azoxy-Methanol (MAM) animal model. MAM treatment induces neurodevelopmental disruptions and behavioral deficits in off-springs of the treated animals reminiscent of those observed in schizophrenia and is thus considered a promising model for studying this pathology. On a gestational day-17, adult pregnant rats were treated with the antimitotic agent MAM. Experimental animals were divided into groups and subgroups according to substance treatment (MAM and vehicle agent [Sham]) and age of analysis (pre-adolescent and post-adolescent). Methylation and mRNA expression analysis of four candidate genes, which are often implicated in schizophrenia, with special emphasis on the Dopamine hypothesis i.e., Dopamine receptor D2 (Drd2), and the "co-factors" Disrupted in schizophrenia 1 (DISC1), Synaptophysin (Syp), and Dystrobrevin-binding protein 1 (Dtnbp1), was performed in the Gyrus cingulum (CING) and prefrontal cortex (PFC). Data were analyzed to observe the effect of substance treatment between groups and the impact of adolescence within-group. We found reduced pre-adolescent expression levels of Drd2 in both brain areas under the application of MAM. The "co-factor genes" did not show high deviations in mRNA expression levels but high alterations of methylation rates under the application of MAM (up to ~20%), which diminished in the further time course, reaching a comparable level like in Sham control animals after adolescence. The pre-adolescent reduction in DRD2 expression might be interpreted as downregulation of the receptor due to hyperdopaminergic signaling from the ventral tegmental area (VTA), eventually even to both investigated brain regions. The notable alterations of methylation rates in the three analyzed co-factor genes might be interpreted as attempt to compensate for the altered dopaminergic neurotransmission.

5.
Schizophr Res ; 249: 56-62, 2022 11.
Article in English | MEDLINE | ID: mdl-32624350

ABSTRACT

Schizophrenia is an illness characterized by positive symptoms, negative symptoms, and cognitive impairments. Cognitive impairments occur before the onset of psychosis and could reflect glutamatergic dysregulation. Thus, identifying associations between genetic variations in genes coding for glutamatergic receptors and cognitive impairment in schizophrenia may help in understanding the basis of these deficits and in identifying potential drug targets. In a discovery cohort of 144 first-episode of psychosis patients (FEP), we genotyped 58 candidate Single Nucleotide Polymorphisms (SNPs) located in NMDA and metabotropic glutamatergic receptors. These SNPs were selected according to the results from the Psychiatric Genomic Consortium and were tested for association with intellectual quotient (IQ) as assessed with the Wechsler Intelligence Scales. For replication, we used the ICAAR cohort including 121 ultra-high-risk patients (UHR) with the same cognitive assessment. A polymorphism located in GRM7, rs1396409, was significantly associated with performance IQ in the discovery cohort of FEP. This association was replicated in the UHR cohort. This polymorphism is also associated with total IQ and verbal IQ in the merged dataset, with a predominant effect on the arithmetic subtest. The rs1396409 polymorphism is significantly associated with cognitive impairment during the onset of psychosis. This genetic association highlights the possible impact of glutamatergic genes in cognitive deficits in the early phases of psychosis and enforces the interest for new therapeutic interventions targeting the glutamatergic pathway.


Subject(s)
Cognitive Dysfunction , Psychotic Disorders , Receptors, Metabotropic Glutamate , Humans , Cognition , Cognitive Dysfunction/genetics , Glutamates , Neuropsychological Tests , Polymorphism, Single Nucleotide/genetics , Psychotic Disorders/complications , Psychotic Disorders/genetics , Psychotic Disorders/diagnosis , Receptors, Metabotropic Glutamate/genetics
6.
Transl Psychiatry ; 11(1): 518, 2021 10 09.
Article in English | MEDLINE | ID: mdl-34628483

ABSTRACT

Cognitive impairment is a core feature of schizophrenia which precedes the onset of full psychotic symptoms, even in the ultra-high-risk stage (UHR). Polygenic risk scores (PRS) can be computed for many psychiatric disorders and phenotyping traits, including scores for resilience. We explored the correlations between several PRS and neurocognition in UHR individuals. We included 107 UHR individuals; 29.9% of them converted to psychosis (UHR-C) while 57.0% did not (UHR-NC) during the 1-year follow-up. Cognitive performances were assessed with the Wechsler Adult Intelligence Scale estimating the Intelligence Quotient (IQ), the Trail Making Test, the verbal fluency, the Stroop test, and the Wisconsin card sorting test. Linear regression models were used to test their association with the PRS for schizophrenia, bipolar disorder, major depression, ADHD, cross-disorders, cognitive performance, intelligence, education attainment, and resilience to schizophrenia. UHR-C had a lower IQ than UHR-NC. The PRS for schizophrenia negatively correlated with IQ, while the PRS for cognitive performance and for resilience positively correlated with IQ. PRS for schizophrenia showed a significant correlation with working memory and processing speed indices. PRS for schizophrenia showed a higher effect on IQ in UHR-NC, and UHR-NC with high PRS for schizophrenia had a similar IQ as UHR-C. Conversely, UHR-C with a high PRS for resilience performed as well as UHR-NC. Our findings suggest that cognitive deficits may predate the onset of psychosis. The genetic architecture of schizophrenia seems to impacts the cognition in UHR-NC. Cognition is also mediated by PRS for resilience.


Subject(s)
Psychotic Disorders , Schizophrenia , Cognition , Humans , Neuropsychological Tests , Psychotic Disorders/genetics , Risk Factors , Schizophrenia/genetics
7.
Int J Mol Sci ; 22(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206945

ABSTRACT

Schizophrenia typically emerges during adolescence, with progression from an ultra-high risk state (UHR) to the first episode of psychosis (FEP) followed by a chronic phase. The detailed pathophysiology of schizophrenia and the factors leading to progression across these stages remain relatively unknown. The current treatment relies on antipsychotics, which are effective for FEP and chronic schizophrenia but ineffective for UHR patients. Antipsychotics modulate dopaminergic and glutamatergic neurotransmission, inflammation, oxidative stress, and membrane lipids pathways. Many of these biological pathways intercommunicate and play a role in schizophrenia pathophysiology. In this context, research of preventive treatment in early stages has explored the antipsychotic effects of omega-3 supplementation in UHR and FEP patients. This review summarizes the action of omega-3 in various biological systems involved in schizophrenia. Similar to antipsychotics, omega-3 supplementation reduces inflammation and oxidative stress, improves myelination, modifies the properties of cell membranes, and influences dopamine and glutamate pathways. Omega-3 supplementation also modulates one-carbon metabolism, the endocannabinoid system, and appears to present neuroprotective properties. Omega-3 has little side effects compared to antipsychotics and may be safely prescribed for UHR patients and as an add-on for FEP patients. This could to lead to more efficacious individualised treatments, thus contributing to precision medicine in psychiatry.


Subject(s)
Antipsychotic Agents/pharmacokinetics , Fatty Acids, Omega-3/metabolism , Schizophrenia/metabolism , Animals , Antipsychotic Agents/therapeutic use , Folic Acid/metabolism , Humans , Methionine/metabolism , Myelin Sheath/metabolism , Schizophrenia/drug therapy , Schizophrenia/prevention & control , Synaptic Transmission
8.
Neuropsychobiology ; 80(1): 36-44, 2021.
Article in English | MEDLINE | ID: mdl-32599581

ABSTRACT

BACKGROUND: Patients suffering from schizophrenic psychosis show reduced synaptic connectivity compared to healthy individuals. Furthermore, the use of cannabis often precedes the onset of schizophrenic psychosis. Therefore, we investigated whether consumption of cannabis has an impact on the methylation pattern of schizophrenia candidate genes concerned with the development and preservation of synapses and synaptic function. METHODS: Fifty blood samples of outpatients affected by treatment-resistant schizophrenic psychosis were collected in the outpatient department of Ch Ste Anne/INSERM (Paris, France). Extracted DNA was sent to the LMN/MHH (Hanover, Germany) where DNA samples were bisulfite converted. The methylation patterns of the promoter region of neuregulin 1 (NRG1), neurexin (NRXN1), disrupted in schizophrenia 1 (DISC1), and microtubule-associated-protein tau (MAPT) were then analysed by sequencing according to Sanger. RESULTS: In NRXN1 the group of non-consumer patients showed a methylation rate slightly lower than controls. In patients with preliminary use of tetrahydrocannabinol (THC) the NRXN1 promoter turned out to be methylated almost two times higher than in non-consumer patients. In MAPT, non-consumer patients showed a significant lower mean methylation rate in comparison to controls. In THC-consuming patients the difference compared with controls became less. NRG1 and DISC1 showed no significant differences between groups, whereas DISC1 appeared to be not methylated at all. CONCLUSION: In MAPT and NRXN1 mean methylation rates were lower in non-consumer patients compared with controls, which seems to be a compensatory mechanism. With consumption of THC, mean methylation rates were increased: in the case of MAPT compared with controls, and in NRXN1 even significantly beyond that. Methylation of NRG1 and DISC1 seems not to be affected by the psychiatric disorder or by consumption of THC.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , DNA Methylation/drug effects , Dronabinol/pharmacology , Promoter Regions, Genetic/drug effects , Schizophrenia/blood , Adult , Calcium-Binding Proteins/metabolism , Female , Humans , Male , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Neuregulin-1/metabolism , tau Proteins/metabolism
9.
Rev Prat ; 70(3): 293-300, 2020 Mar.
Article in French | MEDLINE | ID: mdl-32877064

ABSTRACT

How to manage adult attention deficit hyperactivity disorder in patients with substance use disorders? Adult attention deficit hyperactivity disorder (ADHD) frequently occurs with anxiety disorders, mood disorders and above all addictive comorbidities. Its evaluation must be systematic during an addictology consultation. ADHD is a neurodevelopmental disorder characterized by a complex clinical picture combining cognitive, affective and behavioral dimensions that frequently underlies addictive disorder. Substance misuse frequently begins as an over-the-counter medication. The multidimensional diagnostic approach makes it possible to detect these complex interactions. The motivational therapeutic approach involving the comorbidity issue is crucial to support the patient in his change towards a control of his addictions.


Comment prendre en charge le trouble déficit de l'attention/ hyperactivité de l'adulte en addictologie ? Le trouble déficit de l'attention/hyperactivité de l'adulte se présente fréquemment a vec des comorbidités anxieuses, thymiques et surtout addictives. Qu'il soit connu dès l'enfance ou non, traité ou non, son exploration doit être systématique en consultation d'addictologie. Pathologie développementale à l'expression clinique complexe mêlant les dimensions cognitive, affective et comportementale, ce trouble constitue un facteur de risque significatif pour les troubles addictifs. La prise de substances correspond fréquemment à des stratégies d'automédication. L'approche diagnostique multidimensionnelle permet de détecter ces interactions parfois complexes. L'approche thérapeutique motivationnelle et la prise en compte de cette comorbidité permettent d'accompagner le patient dans son changement vers un contrôle de ses addictions.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Behavior, Addictive , Substance-Related Disorders , Adult , Anxiety Disorders , Attention Deficit Disorder with Hyperactivity/therapy , Comorbidity , Humans
10.
Front Psychiatry ; 11: 680, 2020.
Article in English | MEDLINE | ID: mdl-32754072

ABSTRACT

INTRODUCTION: The emergence of psychosis in at-risk individuals results from interactions between genetic vulnerability and environmental factors, possibly involving dysregulation of the hypothalamic-pituitary-adrenal axis. Hypercorticism was indeed described in schizophrenia and ultra-high-risk states, but its association with clinical outcome has yet to be demonstrated. The impact of stress through cortisol may vary depending on the expression level of genes related to the stress pathway. METHODS: To test this hypothesis, we selected NR3C1, the gene encoding the glucocorticoid receptor, and modeled through logistic regression how its peripheral expression could explain some of the risk of psychosis, independently of peripheral cortisol levels, in a French longitudinal prospective cohort of 133 at-risk individuals, adjusted for sex, age, cannabis, and antipsychotic medication intake. We then performed a genome-wide association analysis, stratified by sex (55 females and 78 males), to identify NR3C1 expression quantitative trait loci to be used as instrumental variables in a Mendelian randomization framework. RESULTS: NR3C1 expression was significantly associated with a higher risk of conversion to psychosis (OR = 2.03, p = 0.03), independently of any other factor. Cortisol was not associated with outcome nor correlated with NR3C1. In the female subgroup, rs6849528 was associated both with NR3C1 mRNA levels (p = 0.015, Effect-Size = 2.7) and conversion (OR = 8.24, p = 0.03). CONCLUSIONS: For the same level of cortisol, NR3C1 expression increases psychotic risk, independently of sex, age, cannabis, and antipsychotic intake. In females, Mendelian randomization confirmed NR3C1's effect on outcome to be unbiased by any environmental confounder.

11.
Sci Rep ; 10(1): 9863, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32555255

ABSTRACT

The seven human 14-3-3 proteins are encoded by the YWHA-gene family. They are expressed in the brain where they play multiple roles including the modulation of synaptic plasticity and neuronal development. Previous studies have provided arguments for their involvement in schizophrenia, but their role during disease onset is unknown. We explored the peripheral-blood expression level of the seven YWHA genes in 92 young individuals at ultra-high risk for psychosis (UHR). During the study, 36 participants converted to psychosis (converters) while 56 did not (non-converters). YWHA genes expression was evaluated at baseline and after a mean follow-up of 10.3 months using multiplex quantitative PCR. Compared with non-converters, the converters had a significantly higher baseline expression levels for 5 YWHA family genes, and significantly different longitudinal changes in the expression of YWHAE, YWHAG, YWHAH, YWHAS and YWAHZ. A principal-component analysis also indicated that the YWHA expression was significantly different between converters and non-converters suggesting a dysregulation of the YWHA co-expression network. Although these results were obtained from peripheral blood which indirectly reflects brain chemistry, they indicate that this gene family may play a role in psychosis onset, opening the way to the identification of prognostic biomarkers or new drug targets.


Subject(s)
14-3-3 Proteins/genetics , Gene Expression Regulation , Psychotic Disorders/genetics , DNA Methylation , Disease Progression , Female , Humans , Longitudinal Studies , Male , Psychotic Disorders/pathology , Young Adult
13.
BMC Res Notes ; 13(1): 74, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32051015

ABSTRACT

OBJECTIVES: The number of DNA methylome and RNA transcriptome studies is growing, but investigators have to consider the cell type composition of tissues used. In blood samples, the data reflect the picture of a mixture of different cells. Specialized algorithms can address the cell-type heterogeneity issue. We tested if these corrections are correlated between two heterogeneous datasets. RESULTS: We used methylome and transcriptome datasets derived from a cohort of ten individuals whose blood was sampled at two different timepoints. We examined how the cell composition derived from these omics correlated with each other using "CIBERSORT" for the transcriptome and "estimateCellCounts function" in R for the methylome. The correlation coefficients between the two omic datasets ranged from 0.45 to 0.81 but correlations were minimal between two different timepoints. Our results suggest that a posteriori correction of a mixture of cells present in blood samples is reliable. Using an omic dataset to correct a second dataset for relative fractions of cells appears to be applicable, but only when the samples are simultaneously collected. This could be beneficial when there are difficulties to control the cell types in the second dataset, even when the sample size is limited.


Subject(s)
Blood/metabolism , Epigenome , Genomics/methods , Transcriptome , Cohort Studies , Genomics/standards , Humans , Reproducibility of Results
15.
Article in English | MEDLINE | ID: mdl-31013727

ABSTRACT

Background: Exposure to endocrine disruptors is on the rise, with new compounds regularly incriminated. In animals and humans, this exposure during critical developmental windows has been associated with various developmental abnormalities, including the emergence of psychiatric disorders. We aimed to review the association between perinatal endocrine disruptor exposure and neurodevelopmental disorders in humans, focusing on cognitive and psychiatric disorders. Methods: We performed a systematic review with key words referring to the fields of neurodevelopment and endocrine disruptors. We reviewed 896 titles, choosing studies on the basis of titles and abstracts. We searched through the methodology sections to find perinatal exposure and neurodevelopmental disorders, following the categories indicated in the Diagnostic and Statistic Manual of Mental Disorders (5th edition). References in some studies brought us to a total of 47 studies included here. Results: Convergent studies report an association between exposure to endocrine disruptors and autism spectrum disorder, attention-deficit hyperactivity disorder, global developmental delay, intellectual disability, communication disorders and unspecified neurodevelopmental disorders. Conclusion: Sufficient data exist to report that exposure to some endocrine disruptors is a risk factor for the emergence of neurodevelopmental disorders. Studying endocrine disruptor exposure in humans is still associated with some limits that are difficult to overcome.


Subject(s)
Child Development Disorders, Pervasive/chemically induced , Endocrine Disruptors/toxicity , Environmental Exposure , Maternal Exposure/adverse effects , Child , Female , Humans , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced
16.
Eur J Pain ; 23(7): 1225-1233, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30793421

ABSTRACT

BACKGROUND: Cannabinoids are proposed in a wide array of medical indications. Yet, the evaluation of adverse effects in controlled clinical studies, following the evidence-based model, has partly been bypassed. On the other hand, studies on the consequences of recreational use of cannabis and experimental studies bring some insights on the potential long-term consequences of cannabinoids use. RESULTS: Epidemiological studies have consistently demonstrated that cannabis use is associated with a risk of persistent cognitive deficits and increased risk of schizophrenia-like psychoses. These risks are modulated by the dose and duration of use, on top of age of use and genetic factors, including partially shared genetic predisposition with schizophrenia. Experimental studies in healthy humans showed that cannabis and its principal psychoactive component, the delta-9-tetrahydrocannabinol (THC), could produce transient, dose-dependent, psychotic symptoms as well as cognitive effects, which can be attenuated by cannabidiol (CBD). Studies in rodents have confirmed these effects and shown that adolescent exposure results in structural changes and impaired synaptic plasticity, impacting fronto-limbic systems that are critically involved in higher brain functions. The endocannabinoid system plays an important role in brain maturation. Its over-activation by cannabinoid receptor type 1 agonists (e.g., THC) during adolescence and the resulting changes in neuroplasticity could alter brain maturation and cause long-lasting changes that persist in the adult brain. CONCLUSIONS: Exposure to cannabinoids can have long-term impact on the brain, with an inter-individual variability that could be conveyed by personal and family history of psychiatric disorders and genetic background. Adolescence and early adulthood are critical periods of vulnerability. SIGNIFICANCE: The assessment of benefice-risk balance of medical use of cannabis and cannabinoids needs to carefully explore populations that could be more at-risk of psychiatric and cognitive complications.


Subject(s)
Cannabinoids/adverse effects , Cognition Disorders/chemically induced , Mental Disorders/chemically induced , Adolescent , Adult , Brain/drug effects , Cannabidiol/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/pharmacology , Cannabis/adverse effects , Cognitive Dysfunction , Dronabinol/pharmacology , Humans
17.
Schizophr Bull ; 45(1): 247-255, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29471546

ABSTRACT

The biological processes associated with the onset of schizophrenia remain largely unknown. Current hypotheses favor gene × environment interactions as supported by our recent report about DNA methylation changes during the onset of psychosis. Here, we conducted the first longitudinal transcriptomic analysis of blood samples from 31 at-risk individuals who later converted to psychosis and 63 at-risk individuals who did not. Individuals were followed for a maximum of 1 year. Blood samples were collected at baseline and at the end of follow-up and individuals served as their own controls. Differentially expressed genes between the 2 groups were identified using the RNA sequencing of an initial discovery subgroup (n = 15 individuals). The most promising results were replicated using high-throughput real-time qPCR in the whole cohort (n = 94 individuals). We identified longitudinal changes in 4 brain-expressed genes based on RNAseq analysis. One of these genes (CPT1A) was replicated in the whole cohort. The previously observed hypermethylation in NRP1 and GSTM5 during the onset of psychosis correlated with a decrease in corresponding gene expression. RNA sequencing also identified 2 co-expression networks that were impaired after conversion compared with baseline-the Wnt pathway including AKT1, CPT1A and semaphorins, and the Toll-like receptor pathway, related to innate immunity. This longitudinal study of transcriptomic changes in individuals with at-risk mental state revealed alterations during conversion to psychosis in pathways and genes relevant to schizophrenia. These results may be a first step toward better understanding psychosis onset. They may also help to identify new biomarkers and targets for disease-modifying therapeutic strategies.


Subject(s)
Disease Progression , Psychotic Disorders/blood , Psychotic Disorders/genetics , Transcriptome , Adolescent , Adult , Female , High-Throughput Nucleotide Sequencing , Humans , Longitudinal Studies , Male , Prodromal Symptoms , RNA, Messenger , Risk , Sequence Analysis, RNA , Young Adult
18.
Metab Brain Dis ; 34(1): 39-52, 2019 02.
Article in English | MEDLINE | ID: mdl-30467770

ABSTRACT

Despite the existence of many preclinical studies, scientific evidence is lacking on the clinical use of alpha-lipoic acid (ALA) for central nervous system disorders. Therefore, we aimed at revising the literature concerning the use of ALA for the treatment of psychiatric and neurological conditions and to point out what is missing for the introduction of this antioxidant to this purpose. For this systematic review we performed a search using PubMed and SCOPUS databases with the following keywords: "alpha-Lipoic Acid AND central nervous system OR psychiatric disorders OR neurological disorders OR mood disorders OR anxiety OR psychosis OR Alzheimer OR Parkinson OR stroke". The total number of references found after automatically and manually excluding duplicates was 1061. After primary and secondary screening 32 articles were selected. Regarding psychiatric disorders, the studies of ALA in schizophrenia are advanced being ALA administration related to the improvement of schizophrenia symptoms and side effects of antipsychotic medication. In neurological disorders, ALA as a supplement was effective in the prevention of Alzheimer disease progression. For stroke, the use of the supplement ALAnerv® (containing 300 mg ALA) presented important results, since it was observed a reversal of clinical parameters and oxidative imbalance in these patients. For other neurological conditions, such as encephalopathy, multiple sclerosis, traumatic brain injury, mitochondrial disorders and migraine, the results are still preliminary. Overall, there is a need of well-designed clinical trials to enhance the clinical evidences of ALA effects for the treatment of neurological and psychiatric conditions.


Subject(s)
Mental Disorders/drug therapy , Nervous System Diseases/drug therapy , Thioctic Acid/therapeutic use , Humans , Treatment Outcome
19.
Naunyn Schmiedebergs Arch Pharmacol ; 391(8): 803-817, 2018 08.
Article in English | MEDLINE | ID: mdl-29732526

ABSTRACT

Cognitive impairment is present in patients with depression. We hypothesized that alpha-lipoic acid (ALA) can reduce cognitive impairment, especially when combined to antidepressants. Female mice received vehicle or corticosterone (CORT) 20 mg/kg, s.c. for 14 days. From the 15th to 21st day, the animals were divided in groups: vehicle, CORT, CORT+desvenlafaxine (DVS) 10 or 20 mg/kg, ALA 100 or 200 mg/kg, DVS10+ALA100, DVS20+ALA100, DVS10+ALA200, or DVS20+ALA200. Tail suspension (TST), social interaction (SIT), novel object recognition (NOR), and Y-maze tests were conducted. Acetylcholinesterase activity (AChE) was measured in the prefrontal cortex (PFC), hippocampus (HC), and striatum (ST). CORT caused depressive-like behavior, impairment in SIT, and cognitive deficits. Alpha-lipoic acid and DVS, alone or combined, reversed CORT effect on TST. In the NOR, ALA200 alone, DVS10+ALA100, or DVS10+ALA200 reversed the deficits in short-term memory, while DVS20 alone or DVS20+ALA200 reversed the deficits in long-term memory. In the Y-maze test, ALA200 alone, DVS20+ALA100, or DVS20+ALA200 reversed the deficits caused by CORT in the working memory. CORT increased AChE in the PFC, HC, and ST. ALA200 alone or DVS20+ALA200 reversed this effect in the PFC, while DVS20 or DVS20+ALA100 reversed this effect in the HC. In the ST, DVS10 or 20, alone or combined, and ALA100 reversed the effects of CORT. These results suggest that DVS+ALA, by reversing CORT-induced memory and social deficits, seems to be a promising therapy for the treatment of depression and reversal of cognitive impairment observed in this disorder.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Desvenlafaxine Succinate/therapeutic use , Memory Disorders/drug therapy , Neuroprotective Agents/therapeutic use , Thioctic Acid/therapeutic use , Acetylcholinesterase/metabolism , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/enzymology , Corticosterone , Depression/chemically induced , Drug Synergism , Female , Memory Disorders/chemically induced , Memory, Short-Term/drug effects , Mice , Social Behavior
20.
Transl Psychiatry ; 8(1): 93, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29695761

ABSTRACT

Conversion to psychosis is a longitudinal process during which several epigenetic changes have been described. We tested the hypothesis that epigenetic variability in the methylomes of ultra-high risk (UHR) individuals may contribute to the risk of conversion. We studied a longitudinal cohort of UHR individuals (n = 39) and compared two groups (converters, n = 14 vs. non-converters, n = 25). A longitudinal methylomic study was conducted using Infinium HumanMethylation450 BeadChip covering half a million cytosine-phosphate-guanine (CpG) sites across the human genome from whole-blood samples. We used two statistical methods to investigate the variability of methylation probes. (i) The search for longitudinal variable methylation probes (VMPs) based on median comparisons identified two VMPs in converters only. The first CpG was located in the MACROD2 gene and the second CpG was in an intergenic region at 8q24.21. (ii) The detection of outliers using variance analysis related to private epimutations identified a dozen CpGs in converters only and highlighted two genes (RAC1 and SPHK1) from the sphingolipid signaling pathway. Our study is the first to support increased methylome variability during conversion to psychosis. We speculate that stochastic factors could increase DNA methylation variability and have a role in the complex pathophysiology of conversion to psychosis as well as in other psychiatric diseases.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Psychotic Disorders/genetics , Adult , Cohort Studies , CpG Islands , Female , Genetic Predisposition to Disease , Humans , Longitudinal Studies , Male , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...