Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Cerebellum ; 23(2): 620-677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36781689

ABSTRACT

The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.


Subject(s)
Cerebellar Nuclei , Cerebellum , Cerebellar Nuclei/diagnostic imaging , Cerebellar Nuclei/physiology , Cerebellum/physiology , Neurons/physiology
2.
Nat Commun ; 14(1): 8123, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065970

ABSTRACT

Spatial transcriptomics (ST) technologies enable high throughput gene expression characterization within thin tissue sections. However, comparing spatial observations across sections, samples, and technologies remains challenging. To address this challenge, we develop STalign to align ST datasets in a manner that accounts for partially matched tissue sections and other local non-linear distortions using diffeomorphic metric mapping. We apply STalign to align ST datasets within and across technologies as well as to align ST datasets to a 3D common coordinate framework. We show that STalign achieves high gene expression and cell-type correspondence across matched spatial locations that is significantly improved over landmark-based affine alignments. Applying STalign to align ST datasets of the mouse brain to the 3D common coordinate framework from the Allen Brain Atlas, we highlight how STalign can be used to lift over brain region annotations and enable the interrogation of compositional heterogeneity across anatomical structures. STalign is available as an open-source Python toolkit at https://github.com/JEFworks-Lab/STalign and as Supplementary Software with additional documentation and tutorials available at https://jef.works/STalign .


Subject(s)
Gene Expression Profiling , Software , Animals , Mice , Brain , Technology
3.
bioRxiv ; 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37090640

ABSTRACT

Spatial transcriptomics (ST) technologies enable high throughput gene expression characterization within thin tissue sections. However, comparing spatial observations across sections, samples, and technologies remains challenging. To address this challenge, we developed STalign to align ST datasets in a manner that accounts for partially matched tissue sections and other local non-linear distortions using diffeomorphic metric mapping. We apply STalign to align ST datasets within and across technologies as well as to align ST datasets to a 3D common coordinate framework. We show that STalign achieves high gene expression and cell-type correspondence across matched spatial locations that is significantly improved over landmark-based affine alignments. Applying STalign to align ST datasets of the mouse brain to the 3D common coordinate framework from the Allen Brain Atlas, we highlight how STalign can be used to lift over brain region annotations and enable the interrogation of compositional heterogeneity across anatomical structures. STalign is available as an open-source Python toolkit at https://github.com/JEFworks-Lab/STalign and as supplementary software with additional documentation and tutorials available at https://jef.works/STalign.

4.
Cell ; 185(22): 4117-4134.e28, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36306734

ABSTRACT

In most sensory modalities, neuronal connectivity reflects behaviorally relevant stimulus features, such as spatial location, orientation, and sound frequency. By contrast, the prevailing view in the olfactory cortex, based on the reconstruction of dozens of neurons, is that connectivity is random. Here, we used high-throughput sequencing-based neuroanatomical techniques to analyze the projections of 5,309 mouse olfactory bulb and 30,433 piriform cortex output neurons at single-cell resolution. Surprisingly, statistical analysis of this much larger dataset revealed that the olfactory cortex connectivity is spatially structured. Single olfactory bulb neurons targeting a particular location along the anterior-posterior axis of piriform cortex also project to matched, functionally distinct, extra-piriform targets. Moreover, single neurons from the targeted piriform locus also project to the same matched extra-piriform targets, forming triadic circuit motifs. Thus, as in other sensory modalities, olfactory information is routed at early stages of processing to functionally diverse targets in a coordinated manner.


Subject(s)
Olfactory Cortex , Olfactory Pathways , Mice , Animals , Olfactory Bulb , Neurons/physiology , High-Throughput Nucleotide Sequencing
5.
Science ; 377(6610): 1043-1044, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36048955

ABSTRACT

Comparative transcriptomics could reveal patterns of cell type evolution in the tetrapod brain.


Subject(s)
Ambystoma mexicanum , Biological Evolution , Brain , Lizards , Neurons , Animals , Brain/cytology , Neurons/metabolism , Transcriptome
6.
Science ; 375(6583): eabh3021, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35201886

ABSTRACT

Sleep quality declines with age; however, the underlying mechanisms remain elusive. We found that hyperexcitable hypocretin/orexin (Hcrt/OX) neurons drive sleep fragmentation during aging. In aged mice, Hcrt neurons exhibited more frequent neuronal activity epochs driving wake bouts, and optogenetic activation of Hcrt neurons elicited more prolonged wakefulness. Aged Hcrt neurons showed hyperexcitability with lower KCNQ2 expression and impaired M-current, mediated by KCNQ2/3 channels. Single-nucleus RNA-sequencing revealed adaptive changes to Hcrt neuron loss in the aging brain. Disruption of Kcnq2/3 genes in Hcrt neurons of young mice destabilized sleep, mimicking aging-associated sleep fragmentation, whereas the KCNQ-selective activator flupirtine hyperpolarized Hcrt neurons and rejuvenated sleep architecture in aged mice. Our findings demonstrate a mechanism underlying sleep instability during aging and a strategy to improve sleep continuity.


Subject(s)
Aging , Neurons/physiology , Orexins/physiology , Sleep Deprivation/physiopathology , Sleep , Wakefulness , Aminopyridines/pharmacology , Animals , CRISPR-Cas Systems , Electroencephalography , Electromyography , Female , Hypothalamic Area, Lateral/physiopathology , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism , Male , Mice , Narcolepsy/genetics , Narcolepsy/physiopathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Pathways , Optogenetics , Patch-Clamp Techniques , RNA-Seq , Sleep Quality
7.
Nature ; 599(7885): 453-457, 2021 11.
Article in English | MEDLINE | ID: mdl-34754107

ABSTRACT

Interconnectivity between neocortical areas is critical for sensory integration and sensorimotor transformations1-6. These functions are mediated by heterogeneous inter-areal cortical projection neurons (ICPN), which send axon branches across cortical areas as well as to subcortical targets7-9. Although ICPN are anatomically diverse10-14, they are molecularly homogeneous15, and how the diversity of their anatomical and functional features emerge during development remains largely unknown. Here we address this question by linking the connectome and transcriptome in developing single ICPN of the mouse neocortex using a combination of multiplexed analysis of projections by sequencing16,17 (MAPseq, to identify single-neuron axonal projections) and single-cell RNA sequencing (to identify corresponding gene expression). Focusing on neurons of the primary somatosensory cortex (S1), we reveal a protracted unfolding of the molecular and functional differentiation of motor cortex-projecting ([Formula: see text]) ICPN compared with secondary somatosensory cortex-projecting ([Formula: see text]) ICPN. We identify SOX11 as a temporally differentially expressed transcription factor in [Formula: see text] versus [Formula: see text] ICPN. Postnatal manipulation of SOX11 expression in S1 impaired sensorimotor connectivity and disrupted selective exploratory behaviours in mice. Together, our results reveal that within a single cortical area, different subtypes of ICPN have distinct postnatal paces of molecular differentiation, which are subsequently reflected in distinct circuit connectivities and functions. Dynamic differences in the expression levels of a largely generic set of genes, rather than fundamental differences in the identity of developmental genetic programs, may thus account for the emergence of intra-type diversity in cortical neurons.


Subject(s)
Cell Differentiation , Neural Pathways , Neurons/cytology , Neurons/physiology , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Animals , Axons/physiology , Connectome , Female , Male , Mice , Mice, Inbred C57BL , Motor Cortex/cytology , Motor Cortex/physiology , Neocortex/cytology , Neocortex/physiology , SOXC Transcription Factors/genetics , Time Factors , Transcriptome
8.
Elife ; 102021 02 08.
Article in English | MEDLINE | ID: mdl-33555999

ABSTRACT

Recognition of environmental cues is essential for the survival of all organisms. Transcriptional changes occur to enable the generation and function of the neural circuits underlying sensory perception. To gain insight into these changes, we generated single-cell transcriptomes of Drosophila olfactory- (ORNs), thermo-, and hygro-sensory neurons at an early developmental and adult stage using single-cell and single-nucleus RNA sequencing. We discovered that ORNs maintain expression of the same olfactory receptors across development. Using receptor expression and computational approaches, we matched transcriptomic clusters corresponding to anatomically and physiologically defined neuron types across multiple developmental stages. We found that cell-type-specific transcriptomes partly reflected axon trajectory choices in development and sensory modality in adults. We uncovered stage-specific genes that could regulate the wiring and sensory responses of distinct ORN types. Collectively, our data reveal transcriptomic features of sensory neuron biology and provide a resource for future studies of their development and physiology.


Subject(s)
Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Olfactory Receptor Neurons/metabolism , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/physiology , Female , Male , Sequence Analysis, RNA , Single-Cell Analysis , Smell , Transcriptome
9.
Cell ; 184(2): 489-506.e26, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33338423

ABSTRACT

Single-cell transcriptomics has been widely applied to classify neurons in the mammalian brain, while systems neuroscience has historically analyzed the encoding properties of cortical neurons without considering cell types. Here we examine how specific transcriptomic types of mouse prefrontal cortex (PFC) projection neurons relate to axonal projections and encoding properties across multiple cognitive tasks. We found that most types projected to multiple targets, and most targets received projections from multiple types, except PFC→PAG (periaqueductal gray). By comparing Ca2+ activity of the molecularly homogeneous PFC→PAG type against two heterogeneous classes in several two-alternative choice tasks in freely moving mice, we found that all task-related signals assayed were qualitatively present in all examined classes. However, PAG-projecting neurons most potently encoded choice in cued tasks, whereas contralateral PFC-projecting neurons most potently encoded reward context in an uncued task. Thus, task signals are organized redundantly, but with clear quantitative biases across cells of specific molecular-anatomical characteristics.


Subject(s)
Cognition/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Task Performance and Analysis , Animals , Calcium/metabolism , Choice Behavior , Cues , Imaging, Three-Dimensional , Integrases/metabolism , Mice, Inbred C57BL , Odorants , Optogenetics , Periaqueductal Gray/physiology , Reward , Single-Cell Analysis , Transcriptome/genetics
11.
Science ; 370(6523)2020 12 18.
Article in English | MEDLINE | ID: mdl-33335034

ABSTRACT

How have complex brains evolved from simple circuits? Here we investigated brain region evolution at cell-type resolution in the cerebellar nuclei, the output structures of the cerebellum. Using single-nucleus RNA sequencing in mice, chickens, and humans, as well as STARmap spatial transcriptomic analysis and whole-central nervous system projection tracing, we identified a conserved cell-type set containing two region-specific excitatory neuron classes and three region-invariant inhibitory neuron classes. This set constitutes an archetypal cerebellar nucleus that was repeatedly duplicated to form new regions. The excitatory cell class that preferentially funnels information to lateral frontal cortices in mice becomes predominant in the massively expanded human lateral nucleus. Our data suggest a model of brain region evolution by duplication and divergence of entire cell-type sets.


Subject(s)
Biological Evolution , Cerebellar Nuclei/cytology , Neurons/classification , Animals , Cerebellar Nuclei/metabolism , Chickens , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , RNA-Seq
12.
Cell ; 182(1): 177-188.e27, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32619423

ABSTRACT

Comprehensive analysis of neuronal networks requires brain-wide measurement of connectivity, activity, and gene expression. Although high-throughput methods are available for mapping brain-wide activity and transcriptomes, comparable methods for mapping region-to-region connectivity remain slow and expensive because they require averaging across hundreds of brains. Here we describe BRICseq (brain-wide individual animal connectome sequencing), which leverages DNA barcoding and sequencing to map connectivity from single individuals in a few weeks and at low cost. Applying BRICseq to the mouse neocortex, we find that region-to-region connectivity provides a simple bridge relating transcriptome to activity: the spatial expression patterns of a few genes predict region-to-region connectivity, and connectivity predicts activity correlations. We also exploited BRICseq to map the mutant BTBR mouse brain, which lacks a corpus callosum, and recapitulated its known connectopathies. BRICseq allows individual laboratories to compare how age, sex, environment, genetics, and species affect neuronal wiring and to integrate these with functional activity and gene expression.


Subject(s)
Connectome , Gene Expression Regulation , Nerve Net/physiology , Neurons/physiology , Sequence Analysis, DNA , Animals , Brain Mapping , Decision Making , Male , Mice, Inbred C57BL , Mice, Neurologic Mutants , Reproducibility of Results , Task Performance and Analysis
13.
Proc Natl Acad Sci U S A ; 117(20): 11068-11075, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32358193

ABSTRACT

The projection targets of a neuronal population are a key feature of its anatomical characteristics. Historically, tissue sectioning, confocal microscopy, and manual scoring of specific regions of interest have been used to generate coarse summaries of mesoscale projectomes. We present here TrailMap, a three-dimensional (3D) convolutional network for extracting axonal projections from intact cleared mouse brains imaged by light-sheet microscopy. TrailMap allows region-based quantification of total axon content in large and complex 3D structures after registration to a standard reference atlas. The identification of axonal structures as thin as one voxel benefits from data augmentation but also requires a loss function that tolerates errors in annotation. A network trained with volumes of serotonergic axons in all major brain regions can be generalized to map and quantify axons from thalamocortical, deep cerebellar, and cortical projection neurons, validating transfer learning as a tool to adapt the model to novel categories of axonal morphology. Speed of training, ease of use, and accuracy improve over existing tools without a need for specialized computing hardware. Given the recent emphasis on genetically and functionally defining cell types in neural circuit analysis, TrailMap will facilitate automated extraction and quantification of axons from these specific cell types at the scale of the entire mouse brain, an essential component of deciphering their connectivity.


Subject(s)
Axons , Brain/anatomy & histology , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Animals , Brain Mapping/methods , Image Processing, Computer-Assisted , Mice , Mice, Inbred C57BL , Nerve Net/anatomy & histology , Nerve Net/diagnostic imaging , Neural Networks, Computer , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Neurons
14.
Annu Rev Neurosci ; 43: 441-464, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32283996

ABSTRACT

As acquiring bigger data becomes easier in experimental brain science, computational and statistical brain science must achieve similar advances to fully capitalize on these data. Tackling these problems will benefit from a more explicit and concerted effort to work together. Specifically, brain science can be further democratized by harnessing the power of community-driven tools, which both are built by and benefit from many different people with different backgrounds and expertise. This perspective can be applied across modalities and scales and enables collaborations across previously siloed communities.


Subject(s)
Big Data , Brain/physiology , Computational Biology , Nerve Net/physiology , Animals , Computational Biology/methods , Databases, Genetic , Gene Expression/physiology , Humans
15.
Curr Biol ; 30(7): 1189-1198.e5, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32059767

ABSTRACT

The regulatory mechanisms by which neurons coordinate their physiology and connectivity are not well understood. The Drosophila olfactory receptor neurons (ORNs) provide an excellent system to investigate this question. Each ORN type expresses a unique olfactory receptor, or a combination thereof, and sends their axons to a stereotyped glomerulus. Using single-cell RNA sequencing, we identified 33 transcriptomic clusters for ORNs and mapped 20 to their glomerular types, demonstrating that transcriptomic clusters correspond well with anatomically and physiologically defined ORN types. Each ORN type expresses hundreds of transcription factors. Transcriptome-instructed genetic analyses revealed that (1) one broadly expressed transcription factor (Acj6) only regulates olfactory receptor expression in one ORN type and only wiring specificity in another type, (2) one type-restricted transcription factor (Forkhead) only regulates receptor expression, and (3) another type-restricted transcription factor (Unplugged) regulates both events. Thus, ORNs utilize diverse strategies and complex regulatory networks to coordinate their physiology and connectivity.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Forkhead Transcription Factors/genetics , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Olfactory Receptor Neurons/physiology , POU Domain Factors/genetics , Receptors, Odorant/genetics , Transcriptome , Animals , Axons/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Forkhead Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Nerve Tissue Proteins/metabolism , POU Domain Factors/metabolism , Receptors, Odorant/metabolism , Single-Cell Analysis , Smell/physiology
16.
Proc Natl Acad Sci U S A ; 117(6): 3214-3219, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31974314

ABSTRACT

Which neural circuits undergo synaptic changes when an animal learns? Although it is widely accepted that changes in synaptic strength underlie many forms of learning and memory, it remains challenging to connect changes in synaptic strength at specific neural pathways to specific behaviors and memories. Here we introduce SYNPLA (synaptic proximity ligation assay), a synapse-specific, high-throughput, and potentially brain-wide method capable of detecting circuit-specific learning-induced synaptic plasticity.


Subject(s)
High-Throughput Screening Assays/methods , Learning/physiology , Neuronal Plasticity/physiology , Protein Interaction Mapping/methods , Synapses , Animals , Auditory Cortex/chemistry , Auditory Cortex/cytology , Auditory Cortex/metabolism , Cells, Cultured , Conditioning, Psychological/physiology , Geniculate Bodies/chemistry , Geniculate Bodies/cytology , Geniculate Bodies/metabolism , Hippocampus/chemistry , Hippocampus/cytology , Hippocampus/metabolism , Mice , Nerve Tissue Proteins/analysis , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Rats , Synapses/chemistry , Synapses/metabolism
17.
Cell ; 179(3): 772-786.e19, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31626774

ABSTRACT

Understanding neural circuits requires deciphering interactions among myriad cell types defined by spatial organization, connectivity, gene expression, and other properties. Resolving these cell types requires both single-neuron resolution and high throughput, a challenging combination with conventional methods. Here, we introduce barcoded anatomy resolved by sequencing (BARseq), a multiplexed method based on RNA barcoding for mapping projections of thousands of spatially resolved neurons in a single brain and relating those projections to other properties such as gene or Cre expression. Mapping the projections to 11 areas of 3,579 neurons in mouse auditory cortex using BARseq confirmed the laminar organization of the three top classes (intratelencephalic [IT], pyramidal tract-like [PT-like], and corticothalamic [CT]) of projection neurons. In depth analysis uncovered a projection type restricted almost exclusively to transcriptionally defined subtypes of IT neurons. By bridging anatomical and transcriptomic approaches at cellular resolution with high throughput, BARseq can potentially uncover the organizing principles underlying the structure and formation of neural circuits.


Subject(s)
Auditory Cortex/metabolism , Nerve Net/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Brain Mapping , Humans , Integrases/genetics , Mice , Neurites/metabolism , Pyramidal Cells/metabolism , Pyramidal Tracts/metabolism
18.
J Chem Neuroanat ; 100: 101653, 2019 10.
Article in English | MEDLINE | ID: mdl-31173871

ABSTRACT

Mapping brain connectivity at single cell resolution is critical for understanding brain structure. For decades, such mapping has been principally approached with microscopy techniques, aiming to visualize neurons and their connections. However, these techniques are often very labor intensive and do not scale well to the complexity of mammalian brains. We recently leveraged the speed and parallelization of DNA sequencing to map the projections of thousands of single neurons in single experiments, and to map cortical mesoscale connectivity in single mice. Here, I review the state of sequencing-based neuroanatomy, and discuss future directions in synaptic connectivity mapping and comparative connectomics.


Subject(s)
Connectome/methods , High-Throughput Nucleotide Sequencing/methods , Neuroanatomy/methods , Animals , Humans
19.
Nat Methods ; 15(11): 871-879, 2018 11.
Article in English | MEDLINE | ID: mdl-30377352

ABSTRACT

Cellular barcoding is a technique in which individual cells are labeled with unique nucleic acid sequences, termed barcodes, so that they can be tracked through space and time. Cellular barcoding can be used to track millions of cells in parallel, and thus is an efficient approach for investigating heterogeneous populations of cells. Over the past 25 years, cellular barcoding has been used for fate mapping, lineage tracing and high-throughput screening, and has led to important insights into developmental biology and gene function. Driven by plummeting sequencing costs and the power of synthetic biology, barcoding is now expanding beyond traditional applications and into diverse fields such as neuroanatomy and the recording of cellular activity. In this review, we discuss the fundamental principles of cellular barcoding, including the underlying mathematics, and its applications in both new and established fields.


Subject(s)
Cell Lineage/genetics , Cell Physiological Phenomena , Cell Tracking/methods , DNA Barcoding, Taxonomic , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Humans
20.
Nature ; 556(7699): 51-56, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29590093

ABSTRACT

Neocortical areas communicate through extensive axonal projections, but the logic of information transfer remains poorly understood, because the projections of individual neurons have not been systematically characterized. It is not known whether individual neurons send projections only to single cortical areas or distribute signals across multiple targets. Here we determine the projection patterns of 591 individual neurons in the mouse primary visual cortex using whole-brain fluorescence-based axonal tracing and high-throughput DNA sequencing of genetically barcoded neurons (MAPseq). Projections were highly diverse and divergent, collectively targeting at least 18 cortical and subcortical areas. Most neurons targeted multiple cortical areas, often in non-random combinations, suggesting that sub-classes of intracortical projection neurons exist. Our results indicate that the dominant mode of intracortical information transfer is not based on 'one neuron-one target area' mapping. Instead, signals carried by individual cortical neurons are shared across subsets of target areas, and thus concurrently contribute to multiple functional pathways.


Subject(s)
Axons/physiology , Single-Cell Analysis , Visual Cortex/cytology , Animals , Brain Mapping , Female , Fluorescence , High-Throughput Nucleotide Sequencing , Male , Mice , Mice, Inbred C57BL , Neural Pathways/physiology , Neuroanatomical Tract-Tracing Techniques , Visual Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...