Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 58(2): 927-42, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25494934

ABSTRACT

Novel antibacterial drugs that are effective against infections caused by multidrug resistant pathogens are urgently needed. In a previous report, we have shown that tetrahydropyran-based inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) display potent antibacterial activity and exhibit no target-mediated cross-resistance with fluoroquinolones. During the course of our optimization program, lead compound 5 was deprioritized due to adverse findings in cardiovascular safety studies. In the effort of mitigating these findings and optimizing further the pharmacological profile of this class of compounds, we have identified a subseries of tetrahydropyran-based molecules that are potent DNA gyrase and topoisomerase IV inhibitors and display excellent antibacterial activity against Gram positive pathogens, including clinically relevant resistant isolates. One representative of this class, compound 32d, elicited only weak inhibition of hERG K(+) channels and hNaV1.5 Na(+) channels, and no effects were observed on cardiovascular parameters in anesthetized guinea pigs. In vivo efficacy in animal infection models has been demonstrated against Staphylococcus aureus and Streptococcus pneumoniae strains.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Gram-Positive Bacteria/drug effects , Pyrans/chemical synthesis , Topoisomerase II Inhibitors/chemical synthesis , Animals , Anti-Bacterial Agents/pharmacology , Guinea Pigs , Hemodynamics/drug effects , Humans , Male , Mice , Microbial Sensitivity Tests , Pyrans/pharmacology , Rats , Rats, Wistar , Structure-Activity Relationship , Topoisomerase II Inhibitors/pharmacology
2.
Antimicrob Agents Chemother ; 58(2): 892-900, 2014.
Article in English | MEDLINE | ID: mdl-24277020

ABSTRACT

Clostridium difficile is a leading cause of health care-associated diarrhea with significant morbidity and mortality, and new options for the treatment of C. difficile-associated diarrhea (CDAD) are needed. Cadazolid is a new oxazolidinone-type antibiotic that is currently in clinical development for treatment of CDAD. Here, we report the in vitro and in vivo antibacterial evaluation of cadazolid against C. difficile. Cadazolid showed potent in vitro activity against C. difficile with a MIC range of 0.125 to 0.5 µg/ml, including strains resistant to linezolid and fluoroquinolones. In time-kill kinetics experiments, cadazolid showed a bactericidal effect against C. difficile isolates, with >99.9% killing in 24 h, and was more bactericidal than vancomycin. In contrast to metronidazole and vancomycin, cadazolid strongly inhibited de novo toxin A and B formation in stationary-phase cultures of toxigenic C. difficile. Cadazolid also inhibited C. difficile spore formation substantially at growth-inhibitory concentrations. In the hamster and mouse models for CDAD, cadazolid was active, conferring full protection from diarrhea and death with a potency similar to that of vancomycin. These findings support further investigations of cadazolid for the treatment of CDAD.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Clostridium Infections/drug therapy , Enterocolitis, Pseudomembranous/drug therapy , Oxazolidinones/pharmacology , Spores, Bacterial/drug effects , Acetamides/pharmacology , Animals , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Bacterial Toxins/antagonists & inhibitors , Bacterial Toxins/biosynthesis , Clostridioides difficile/growth & development , Clostridioides difficile/metabolism , Clostridium Infections/microbiology , Clostridium Infections/mortality , Cricetinae , Enterocolitis, Pseudomembranous/microbiology , Enterocolitis, Pseudomembranous/mortality , Enterotoxins/antagonists & inhibitors , Enterotoxins/biosynthesis , Female , Fluoroquinolones/pharmacology , Humans , Linezolid , Male , Metronidazole/pharmacology , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Spores, Bacterial/growth & development , Survival Analysis , Vancomycin/pharmacology
3.
Antimicrob Agents Chemother ; 58(2): 901-8, 2014.
Article in English | MEDLINE | ID: mdl-24277035

ABSTRACT

Cadazolid is a new oxazolidinone-type antibiotic currently in clinical development for the treatment of Clostridium difficile-associated diarrhea. Here, we report investigations on the mode of action and the propensity for spontaneous resistance development in C. difficile strains. Macromolecular labeling experiments indicated that cadazolid acts as a potent inhibitor of protein synthesis, while inhibition of DNA synthesis was also observed, albeit only at substantially higher concentrations of the drug. Strong inhibition of protein synthesis was also obtained in strains resistant to linezolid, in agreement with low MICs against such strains. Inhibition of protein synthesis was confirmed in coupled transcription/translation assays using extracts from different C. difficile strains, including strains resistant to linezolid, while inhibitory effects in DNA topoisomerase assays were weak or not detectable under the assay conditions. Spontaneous resistance frequencies of cadazolid were low in all strains tested (generally <10(-10) at 2× to 4× the MIC), and in multiple-passage experiments (up to 13 passages) MICs did not significantly increase. Furthermore, no cross-resistance was observed, as cadazolid retained potent activity against strains resistant or nonsusceptible to linezolid, fluoroquinolones, and the new antibiotic fidaxomicin. In conclusion, the data presented here indicate that cadazolid acts primarily by inhibition of protein synthesis, with weak inhibition of DNA synthesis as a potential second mode of action, and suggest a low potential for spontaneous resistance development.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Drug Resistance, Bacterial/genetics , Protein Biosynthesis/drug effects , Acetamides/pharmacology , Aminoglycosides/pharmacology , Clostridioides difficile/genetics , Clostridioides difficile/growth & development , Clostridioides difficile/metabolism , DNA Gyrase/genetics , DNA Gyrase/metabolism , Drug Resistance, Bacterial/drug effects , Fidaxomicin , Fluoroquinolones/pharmacology , Linezolid , Microbial Sensitivity Tests , Oxazolidinones/pharmacology , Protein Biosynthesis/genetics , RNA/antagonists & inhibitors , RNA/biosynthesis , Recombinant Proteins , Subcellular Fractions/chemistry , Subcellular Fractions/metabolism , Transcription, Genetic/drug effects , Vancomycin/pharmacology
4.
J Med Chem ; 56(18): 7396-415, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-23968485

ABSTRACT

There is an urgent need for new antibacterial drugs that are effective against infections caused by multidrug-resistant pathogens. Novel nonfluoroquinolone inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) have the potential to become such drugs because they display potent antibacterial activity and exhibit no target-mediated cross-resistance with fluoroquinolones. Bacterial topoisomerase inhibitors that are built on a tetrahydropyran ring linked to a bicyclic aromatic moiety through a syn-diol linker show potent anti-Gram-positive activity, covering isolates with clinically relevant resistance phenotypes. For instance, analog 49c was found to be a dual DNA gyrase-topoisomerase IV inhibitor, with broad antibacterial activity and low propensity for spontaneous resistance development, but suffered from high hERG K(+) channel block. On the other hand, analog 49e displayed lower hERG K(+) channel block while retaining potent in vitro antibacterial activity and acceptable frequency for resistance development. Furthermore, analog 49e showed moderate clearance in rat and promising in vivo efficacy against Staphylococcus aureus in a murine infection model.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , DNA Topoisomerases/metabolism , Drug Design , Gram-Positive Bacteria/drug effects , Pyrans/chemical synthesis , Pyrans/pharmacology , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacokinetics , Chemistry Techniques, Synthetic , DNA Gyrase/chemistry , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/chemistry , DNA Topoisomerase IV/metabolism , DNA Topoisomerases/chemistry , Female , Gram-Positive Bacteria/enzymology , Humans , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation , Protein Conformation , Pyrans/metabolism , Pyrans/pharmacokinetics , Rats , Structure-Activity Relationship , Topoisomerase II Inhibitors , Topoisomerase Inhibitors/chemical synthesis , Topoisomerase Inhibitors/metabolism , Topoisomerase Inhibitors/pharmacokinetics , Topoisomerase Inhibitors/pharmacology
5.
J Bacteriol ; 195(18): 4067-73, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23836867

ABSTRACT

Bactericidal antibiotics kill by different mechanisms as a result of a specific interaction with their cellular targets. Over the past few years, alternative explanations for cidality have been proposed based on a postulated common pathway, depending on the intracellular production of reactive oxygen species. Detection of hydroxyl radicals relies on staining with specific fluorescent dyes that can penetrate the cell and are detected using flow cytometry. Flow cytometry has become an important tool in microbiology to study characteristics of individual cells within large heterogeneous cellular populations. We show here that Escherichia coli treated with different bactericidal antibiotics exhibits increased autofluorescence when analyzed by flow cytometry. We present evidence suggesting that this change in autofluorescence is caused by altered cell morphology upon antibiotic treatment. Consistent with this view, mutant cells that fail to elongate upon norfloxacin treatment show no increased auto-fluorescence response. Finally, we present data demonstrating that changes in autofluorescence can impact the results with fluorescent probes when using flow cytometry and confound the findings obtained with specific dyes. In summary, recent findings that correlate the exposure to cidal antibiotics with the production of reactive oxygen species need to be reconsidered in light of such changes in autofluorescence. Conclusive evidence for an increase of hydroxyl radicals after treatment with such drugs is still missing.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/physiology , Flow Cytometry/methods , Fluorescent Dyes/pharmacology , Hydroxyl Radical/metabolism , Ampicillin/metabolism , Ampicillin/pharmacology , Anti-Bacterial Agents/metabolism , Escherichia coli/genetics , Escherichia coli/ultrastructure , Fluorescence , Fluorescent Dyes/metabolism , Microbial Sensitivity Tests , Mutation , Norfloxacin/metabolism , Norfloxacin/pharmacology , Reactive Oxygen Species/metabolism
6.
Bioorg Med Chem Lett ; 22(21): 6705-11, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23006603

ABSTRACT

A series of 2-amino-[1,8]-naphthyridine-3-carboxamides (ANCs) with potent inhibition of bacterial NAD(+)-dependent DNA ligases (LigAs) evolved from a 2,4-diaminopteridine derivative discovered by HTS. The design was guided by several highly resolved X-ray structures of our inhibitors in complex with either Streptococcus pneumoniae or Escherichia coli LigA. The structure-activity-relationship based on the ANC scaffold is discussed. The in-depth characterization of 2-amino-6-bromo-7-(trifluoromethyl)-[1,8]-naphthyridine-3-carboxamide, which displayed promising in vitro (MIC Staphylococcus aureus 1 mg/L) and in vivo anti-staphylococcal activity, is presented.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , DNA Ligases/antagonists & inhibitors , Drug Design , Staphylococcus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Crystallography, X-Ray , DNA, Bacterial/antagonists & inhibitors , Inhibitory Concentration 50 , Mice , Microbial Sensitivity Tests , Molecular Structure , Rats , Staphylococcal Infections/drug therapy , Structure-Activity Relationship
7.
Mol Microbiol ; 72(6): 1500-16, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19460094

ABSTRACT

Biofilms are communities of surface-attached, matrix-embedded microbial cells that can resist antimicrobial chemotherapy and contribute to persistent infections. Using an Escherichia coli biofilm model we found that exposure of bacteria to subinhibitory concentrations of ribosome-targeting antibiotics leads to strong biofilm induction. We present evidence that this effect is elicited by the ribosome in response to translational stress. Biofilm induction involves upregulation of the polysaccharide adhesin poly-beta-1,6-N-acetyl-glucosamine (poly-GlcNAc) and two components of the poly-GlcNAc biosynthesis machinery, PgaA and PgaD. Poly-GlcNAc control depends on the bacterial signalling molecules guanosine-bis 3', 5'(diphosphate) (ppGpp) and bis-(3'-5')-cyclic di-GMP (c-di-GMP). Treatment with translation inhibitors causes a ppGpp hydrolase (SpoT)-mediated reduction of ppGpp levels, resulting in specific derepression of PgaA. Maximal induction of PgaD and poly-GlcNAc synthesis requires the production of c-di-GMP by the dedicated diguanylate cyclase YdeH. Our results identify a novel regulatory mechanism that relies on ppGpp signalling to relay information about ribosomal performance to the Pga machinery, thereby inducing adhesin production and biofilm formation. Based on the important synergistic roles of ppGpp and c-di-GMP in this process, we suggest that interference with bacterial second messenger signalling might represent an effective means for biofilm control during chronic infections.


Subject(s)
Biofilms/growth & development , Cyclic GMP/analogs & derivatives , Escherichia coli/physiology , Guanosine Tetraphosphate/metabolism , Ribosomes/drug effects , Second Messenger Systems , Adhesins, Bacterial/metabolism , Anti-Bacterial Agents/pharmacology , Cyclic GMP/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Phosphorus-Oxygen Lyases/genetics , Phosphorus-Oxygen Lyases/metabolism , Protein Biosynthesis/drug effects , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , RNA Processing, Post-Transcriptional , beta-Glucans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...