Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(51): 21479-21486, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38054605

ABSTRACT

Single-atom catalysts (SACs) comprise catalytically active atoms dispersed on supports; they combine the high activity and site uniformity of homogeneous catalysts with the ease of separability of heterogeneous catalysts. However, SACs lack fine control over the active site, provided by ligands in homogeneous catalysts. In this work, we demonstrate that modification of the support with an organic monolayer is a viable approach to improving the catalytic performance. The addition of catechol-type monolayers to a Pd/CeO2 SAC increases its catalytic activity for Suzuki cross-coupling, a central reaction in the synthesis of fine chemicals and pharmaceuticals. Kinetic trials reveal that the coating reduces the activation energy from 49 ± 9 to 22 ± 5 kJ/mol and produces a 4-fold rate enhancement at 25 °C, an effect we attribute to π-π interactions between the reactant and the catechol coating. Further development of this approach could vastly increase the utility of SACs in organic synthesis.

2.
ACS Appl Mater Interfaces ; 15(24): 29160-29169, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37289992

ABSTRACT

Organic coatings on catalytic metal nanoparticles (NPs) typically hinder their activity due to the blocking of active sites. Therefore, considerable effort is made to remove organic ligands when preparing supported NP catalytic materials. Here, cationic polyelectrolyte coatings are shown to increase the catalytic activity of partially embedded gold nanoislands (Au NIs) toward transfer hydrogenation and oxidation reactions with anionic substrates compared to the activity of identical but uncoated Au NIs. Any potential steric hindrance caused by the coating is countered by a decrease in the activation energy of the reaction by half, resulting in overall enhancement. The direct comparison to identical but uncoated NPs isolates the role of the coating and provides conclusive evidence of enhancement. Our findings show that engineering the microenvironment of heterogeneous catalysts, creating hybrid materials that cooperatively interact with the reactants involved, is a viable and exciting path to improving their performance.

3.
ACS Appl Mater Interfaces ; 14(28): 32696-32705, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35816695

ABSTRACT

The rational design of chemical coatings is used to control surface interactions with small molecules, biomolecules, nanoparticles, and liquids as well as optical and other properties. Specifically, micropatterned surface coatings have been used in a wide variety of applications, including biosensing, cell growth assays, multiplexed biomolecule interaction arrays, and responsive surfaces. Here, a maskless photopatterning process is studied, using the photocatalyzed thiol-yne "click" reaction to create both binary and gradient patterns on thiolated surfaces. Nearly defect-free patterns are produced by first coating glass surfaces with mercaptopropylsilatrane, a silanizing agent that forms smoother self-assembled monolayers than the commonly used 3-mercaptopropyltrimethoxysilane. Photopatterning is then performed using UV (365 nm) or visible (405 nm) light to graft molecules onto the surface in tunable concentrations based on the local exposure. The technique is demonstrated for multiple types of molecular grafts, including fluorescent dyes, poly(ethylene glycol), and biotin, the latter allowing subsequent deposition of biomolecules via biotin-avidin binding. Patterning is demonstrated in water and dimethylformamide, and the process is repeated to combine molecules soluble in different phases. The combination of arbitrary gradient formation, broad applicability, a low defect rate, and fast prototyping thanks to the maskless nature of the process creates a particularly powerful technique for molecular surface patterning that could be used for a wide variety of micropatterned applications.


Subject(s)
Biotin , Sulfhydryl Compounds , Avidin/chemistry , Biotin/chemistry , Click Chemistry , Light , Sulfhydryl Compounds/chemistry , Surface Properties
4.
J Chem Phys ; 152(20): 200901, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32486653

ABSTRACT

Electron ratchets are non-equilibrium electronic devices that break inversion symmetry to produce currents from non-directional and random perturbations, without an applied net bias. They are characterized by strong parameter dependence, where small changes in operating conditions lead to large changes in the magnitude and even direction of the resulting current. This high sensitivity makes electron ratchets attractive research subjects, but leads to formidable challenges in their deeper study, and particularly to their useful application. This perspective reviews the progress that was made in the field starting from the first experimental electron ratchets in the late 1990s, and how the field spawned multiple designs with very different properties. We discuss the possible uses of electron ratchets in sensing and energy harvesting, and the specific issues encountered when idealized behavior meets complex reality. We promote an application-driven approach where complexity is not necessarily detrimental and argue that a system level perspective would be beneficial over reductionism. We highlight several promising research directions, which revolve around the intentional study of complex effects, and the modeling of realistic devices.

5.
Nano Lett ; 17(9): 5848-5854, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28817289

ABSTRACT

Biological systems utilize a combination of asymmetry, noise, and chemical energy to produce motion in the highly damped environment of the cell with molecular motors, many of which are "ratchets", nonequilibrium devices for producing directed transport using nondirectional perturbations without a net bias. The underlying ratchet principle has been implemented in man-made micro- and nanodevices to transport charged particles by oscillating an electric potential with repeating asymmetric features. In this experimental study, the ratcheting of electrons in an organic semiconductor is optimized by tuning the temporal modulation of the oscillating potential, applied using nanostructured electrodes. An analytical model of steady-state carrier dynamics is used to determine that symmetry-breaking motion of carriers through the thickness of the polymer layer enables even temporally unbiased waveforms (e.g., sine) to produce current, an advance that could allow the future use of electromagnetic radiation to power ratchets. The analysis maps the optimal operating frequency of the ratchet to the mobility of the transport layer and the spatial periodicity of the potential, and relates the dependence on the temporal waveform to the dielectric characteristics and thickness of the layer.

6.
Proc Natl Acad Sci U S A ; 114(33): 8698-8703, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28760955

ABSTRACT

Ratchets are nonequilibrium devices that produce directional motion of particles from nondirectional forces without using a bias, and are responsible for many types of biological transport, which occur with high yield despite strongly damped and noisy environments. Ratchets operate by breaking time-reversal and spatial symmetries in the direction of transport through application of a time-dependent potential with repeating, asymmetric features. This work demonstrates the ratcheting of electrons within a highly scattering organic bulk-heterojunction layer, and within a device architecture that enables the application of arbitrarily shaped oscillating electric potentials. Light is used to modulate the carrier density, which modifies the current with a nonmonotonic response predicted by theory. This system is driven with a single unbiased sine wave source, enabling the future use of natural oscillation sources such as electromagnetic radiation.

7.
ACS Nano ; 11(7): 7148-7155, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28700217

ABSTRACT

Ratcheting is a mechanism that produces directional transport of particles by rectifying nondirectional energy using local asymmetries rather than a net bias in the direction of transport. In a flashing ratchet, an oscillating force (here, an AC field) is applied perpendicular to the direction of transport. In an effort to explore the properties of current experimentally realizable ratchet systems, and to design new ones, this paper describes classical simulations of a damped flashing ratchet that transports charged nanoparticles within a transport layer of finite, non-zero thickness. The thickness of the layer, and the decay of the applied field in the z-direction throughout that thickness, provide a mechanism of symmetry breaking in the system that allows the ratchet to produce directional transport using a temporally unbiased oscillation of the AC driving field, a sine wave. Sine waves are conveniently produced experimentally or harvested from natural sources but cannot produce transport in a 1D or pseudo-1D system. The sine wave drive produces transport velocities an order of magnitude higher than those produced by the common on/off drive, but lower than those produced by a temporally biased square wave drive (unequal durations of the positive and negative states). The dependence of the particle velocity on the thickness of the transport layer, and on the homogeneity of the oscillating field within the layer, is presented for all three driving schemes.

8.
Phys Rev E ; 93(6): 062128, 2016 06.
Article in English | MEDLINE | ID: mdl-27415229

ABSTRACT

Ratchets rectify the motion of randomly moving particles, which are driven by isotropic sources of energy such as thermal and chemical energy, without applying a net, time-averaged force between source and drain. This paper describes the behavior of a damped electron, modeled by a quantum Lindblad master equation, within a flashing ratchet (a one-dimensional potential that oscillates between a flat surface and a periodic asymmetric surface). By examining the complete space of all biharmonic potential shapes and a large range of oscillation frequencies, two modes of ratchet operation, differentiated by their oscillation frequencies (relative to the rate of electron relaxation), are identified. Slow-oscillating, strong friction ratchets operate by a classical, overdamped mechanism. In fast-oscillating, weak friction ratchets, current is primarily produced when the frequency of the oscillating potential is resonant with the beating of the electron wave function in the potential well. The shape of the ratchet potential determines the direction of the current (and, in some cases, straightforwardly accounts for current reversals), but the maximum achievable current at any shape is controlled by the degree of friction applied to the electron.

9.
Nanoscale ; 6(24): 15134-43, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25372955

ABSTRACT

Metal surfaces and nanostructures interact with fluorescent materials, enhancing or quenching the fluorescence intensity, modifying the fluorescent lifetime, and changing the emission frequency and linewidth. These interactions occur via several mechanisms, including radiationless energy transfer, electric field enhancement, and photonic mode density modification. The interactions display a strong dependence on the distance between the fluorophore and the metal structures. Here we study the distance-dependent effects of two types of plasmonic gold nano-island films on the emission intensity, wavelength, linewidth and lifetime of a fluorophore layer, separated from the film by a dielectric spacer 2-348 nm thick. The distance dependence is found to be unrelated to the plasmonic field decay lengths. In some cases fluorescence intensity enhancement is seen even at 200 nm metal-fluorophore separation, indicating far-field effects. We report, for the first time, a distance-dependent oscillation in the emission peak wavelength and linewidth, attributed to interference-based oscillations in the intensity of the electric field. We find that the studied nanoparticle (NP) films do not display the previously reported distance profile of single NPs, but rather behave in a collective fashion similar to continuous metal surfaces.

10.
Anal Chem ; 85(21): 10022-7, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24107238

ABSTRACT

Metal nanoparticle (NP) films, prepared by adsorption of NPs from a colloidal solution onto a preconditioned solid substrate, usually form well-dispersed random NP monolayers on the surface. For certain metals (e.g., Au, Ag, Cu), the NP films display a characteristic localized surface plasmon resonance (LSPR) extinction band, conveniently measured using transmission or reflection ultraviolet-visible light (UV-vis) spectroscopy. The surface plasmon band wavelength, intensity, and shape are affected by (among other parameters) the NP spatial distribution on the surface and the effective refractive index (RI) of the surrounding medium. A major concern in the formation of such NP assemblies on surfaces is a commonly observed instability, i.e., a strong tendency of the NPs to undergo aggregation upon removal from the solution and drying, expressed as a drastic change in the LSPR band. Since various imaging modes and applications require dried NP films, preservation of the film initial (wet) morphology and optical properties upon drying are highly desirable. The latter is achieved in the present work by introducing a convenient and generally applicable method for preventing NP aggregation upon drying while preserving the original film morphology and optical response. Stabilization of Au and Ag NP monolayers toward drying is accomplished by coating the immobilized NPs with an ultrathin (3.0-3.5 nm) silica layer, deposited using a sol-gel reaction performed on an intermediate self-assembled aminosilane layer. The thin silica coating prevents NP aggregation and maintains the initial NP film morphology and LSPR response during several cycles of drying and immersion in water. It is shown that the silica-coated NP films retain their properties as effective LSPR transducers.


Subject(s)
Glass , Metal Nanoparticles , Silicon Dioxide , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectrophotometry, Ultraviolet , Surface Plasmon Resonance
11.
ACS Nano ; 5(2): 748-60, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21226492

ABSTRACT

Gold nanoisland films displaying localized surface plasmon resonance optical response were constructed by evaporation on glass and annealing. The surface plasmon distance sensitivity and refractive index sensitivity (RIS) for island films of different nominal thicknesses and morphologies were investigated using layer-by-layer polyelectrolyte multilayer assembly. Since the polymer forms a conformal coating on the Au islands and the glass substrate between islands, the relative sensitivity of the optical response to adsorption on and between islands was evaluated. The RIS was also determined independently using a series of solvents. An apparent discrepancy between the behavior of the RIS for wavelength shift and intensity change is resolved by considering the different physical nature of the two quantities, leading to the use of a new variable, that is, RIS (for intensity change) normalized to the surface density of islands. In the present system the surface plasmon decay length and RIS are shown to be directly correlated; both parameters increase with increasing average island size. This result implies that a higher RIS is not always beneficial for sensing; maximizing the transducer optical response requires the interrelated RIS and decay length to be optimized with respect to the dimensions of the studied analyte-receptor system. It is shown that, as a rule, transducers comprising larger islands furnish better overall sensitivity for thicker adlayers, whereas thinner adlayers produce a larger response when sensed using transducers comprising smaller islands, despite the lower RIS of the latter.

12.
J Phys Chem Lett ; 2(10): 1223-6, 2011 May 19.
Article in English | MEDLINE | ID: mdl-26295330

ABSTRACT

The refractive index sensitivity (RIS) of a localized surface plasmon resonance (LSPR) transducer is one of the key parameters determining its effectiveness in sensing applications. LSPR spectra of nanoparticulate gold films, including Au island films prepared by evaporation on glass and annealing as well as immobilized Au nanoparticle (NP) films, were measured in the transmission and reflection modes. It is shown that the RIS, measured as the wavelength shift in solvents with varying refractive index (RI), is significantly higher in reflection measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...