Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37111983

ABSTRACT

The aim of this study was to evaluate the adhesion and biofilm formation of Candida albicans (C. albicans) on conventionally fabricated, milled, and 3D-printed denture base resin materials in order to determine the susceptibility of denture contamination during clinical use. Specimens were incubated with C. albicans (ATCC 10231) for 1 and 24 h. Adhesion and biofilm formation of C. albicans were assessed using the field emission scanning electron microscopy (FESEM). The XTT (2,3-(2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide) assay was used for the quantification of fungal adhesion and biofilm formation. The data were analyzed using GraphPad Prism 8.02 for windows. One-way ANOVA with Tukey's post hoc testing were performed with a statistical significance level set at α = 0.05. The quantitative XTT biofilm assay revealed significant differences in the biofilm formation of C. albicans between the three groups in the 24 h incubation period. The highest proportion of biofilm formation was observed in the 3D-printed group, followed by the conventional group, while the lowest candida biofilm formation was observed in the milled group. The difference in biofilm formation among the three tested dentures was statistically significant (p < 0.001). The manufacturing technique has an influence on the surface topography and microbiological properties of the fabricated denture base resin material. Additive 3D-printing technology results in increased candida adhesion and the roughest surface topography of maxillary resin denture base as compared to conventional flask compression and CAD/CAM milling techniques. In a clinical setting, patients wearing additively manufactured maxillary complete dentures are thus more susceptible to the development of candida-associated denture stomatitis and accordingly, strict oral hygiene measures and maintenance programs should be emphasized to patients.

2.
Arthritis Rheumatol ; 73(7): 1200-1210, 2021 07.
Article in English | MEDLINE | ID: mdl-33452873

ABSTRACT

OBJECTIVE: ZAP-70W163C BALB/c (SKG) mice develop reactive arthritis (ReA) following infection with Chlamydia muridarum. Since intracellular pathogens enhance their replicative fitness in stressed host cells, we examined how myeloid cells infected with C muridarum drive arthritis. METHODS: SKG, Il17a-deficient SKG, and BALB/c female mice were infected with C muridarum or C muridarum luciferase in the genitals. C muridarum dissemination was assessed by in vivo imaging or genomic DNA amplification. Macrophages were depleted using clodronate liposomes. Anti-tumor necrosis factor (anti-TNF) and anti-interleukin-23p19 (anti-IL-23p19) were administered after infection or arthritis onset. Gene expression of Hspa5, Tgtp1, Il23a, Il17a, Il12b, and Tnf was compared in SKG mice and BALB/c mice. RESULTS: One week following infection with C muridarum, macrophages and neutrophils were observed to have infiltrated the uteri of mice and were also shown to have carried C muridarum DNA to the spleen. C muridarum load was higher in SKG mice than in BALB/c mice. Macrophage depletion was shown to reduce C muridarum load and prevent development of arthritis. Compared with BALB/c mice, expression of Il23a and Il17a was increased in the uterine and splenic neutrophils of SKG mice. The presence of anti-IL-23p19 during infection or Il17a deficiency suppressed arthritis. Tnf was overexpressed in the joints of SKG mice within 1 week postinfection, and persisted beyond the first week. TNF inhibition during infection or at arthritis onset suppressed the development of arthritis. Levels of endoplasmic reticulum stress were constitutively increased in the joints of SKG mice but were induced, in conjunction with immunity-related GTPase, by C muridarum infection in the uterus. CONCLUSION: C muridarum load is higher in SKG mice than in BALB/c mice. Whereas proinflammatory IL-23 produced by neutrophils contributes to the initiation of C muridarum-mediated ReA, macrophage depletion reduces C muridarum dissemination to other tissues, tissue burden, and the development of arthritis. TNF inhibition was also shown to suppress arthritis development. Our data suggest that enhanced bacterial dissemination in macrophages of SKG mice drives the TNF production needed for persistent arthritis.


Subject(s)
Arthritis, Reactive/immunology , Chlamydia Infections/immunology , Interleukin-23 Subunit p19/immunology , Interleukin-23/immunology , Macrophages/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Arthritis, Experimental/genetics , Arthritis, Reactive/genetics , Chlamydia muridarum , Endoplasmic Reticulum Chaperone BiP , Female , Gene Expression Profiling , Heat-Shock Proteins/genetics , Heat-Shock Proteins/immunology , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-23 Subunit p19/genetics , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/immunology , Tumor Necrosis Factor-alpha/genetics , ZAP-70 Protein-Tyrosine Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...