Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 15195, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956443

ABSTRACT

The intestinal epithelium dynamically controls cell cycle, yet no experimental platform exists for directly analyzing cell cycle phases in non-immortalized human intestinal epithelial cells (IECs). Here, we present two reporters and a complete platform for analyzing cell cycle phases in live primary human IECs. We interrogate the transcriptional identity of IECs grown on soft collagen, develop two fluorescent cell cycle reporter IEC lines, design and 3D print a collagen press to make chamber slides for optimal imaging while supporting primary human IEC growth, live image cell cycle dynamics, then assemble a computational pipeline building upon free-to-use programs for semi-automated analysis of cell cycle phases. The PIP-FUCCI construct allows for assigning cell cycle phase from a single image of living cells, and our PIP-H2A construct allows for semi-automated direct quantification of cell cycle phase lengths using our publicly available computational pipeline. Treating PIP-FUCCI IECs with oligomycin demonstrates that inhibiting mitochondrial respiration lengthens G1 phase, and PIP-H2A cells allow us to measure that oligomycin differentially lengthens S and G2/M phases across heterogeneous IECs. These platforms provide opportunities for future studies on pharmaceutical effects on the intestinal epithelium, cell cycle regulation, and more.


Subject(s)
Cell Cycle , Epithelial Cells , Intestinal Mucosa , Humans , Epithelial Cells/cytology , Epithelial Cells/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Oligomycins/pharmacology , Cells, Cultured
2.
Proc Natl Acad Sci U S A ; 121(7): e2309261121, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38324568

ABSTRACT

The CDK4/6 inhibitor palbociclib blocks cell cycle progression in Estrogen receptor-positive, human epidermal growth factor 2 receptor-negative (ER+/HER2-) breast tumor cells. Despite the drug's success in improving patient outcomes, a small percentage of tumor cells continues to divide in the presence of palbociclib-a phenomenon we refer to as fractional resistance. It is critical to understand the cellular mechanisms underlying fractional resistance because the precise percentage of resistant cells in patient tissue is a strong predictor of clinical outcomes. Here, we hypothesize that fractional resistance arises from cell-to-cell differences in core cell cycle regulators that allow a subset of cells to escape CDK4/6 inhibitor therapy. We used multiplex, single-cell imaging to identify fractionally resistant cells in both cultured and primary breast tumor samples resected from patients. Resistant cells showed premature accumulation of multiple G1 regulators including E2F1, retinoblastoma protein, and CDK2, as well as enhanced sensitivity to pharmacological inhibition of CDK2 activity. Using trajectory inference approaches, we show how plasticity among cell cycle regulators gives rise to alternate cell cycle "paths" that allow individual tumor cells to escape palbociclib treatment. Understanding drivers of cell cycle plasticity, and how to eliminate resistant cell cycle paths, could lead to improved cancer therapies targeting fractionally resistant cells to improve patient outcomes.


Subject(s)
Breast Neoplasms , Piperazines , Pyridines , Humans , Female , Cell Cycle , Cell Division , Piperazines/pharmacology , Piperazines/therapeutic use , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Protein Kinase Inhibitors/pharmacology
3.
Methods Mol Biol ; 2740: 243-262, 2024.
Article in English | MEDLINE | ID: mdl-38393480

ABSTRACT

The development of technologies that allow measurement of the cell cycle at the single-cell level has revealed novel insights into the mechanisms that regulate cell cycle commitment and progression through DNA replication and cell division. These studies have also provided evidence of heterogeneity in cell cycle regulation among individual cells, even within a genetically identical population. Cell cycle mapping combines highly multiplexed imaging with manifold learning to visualize the diversity of "paths" that cells can take through the proliferative cell cycle or into various states of cell cycle arrest. In this chapter, we describe a general protocol of the experimental and computational components of cell cycle mapping. We also provide a comprehensive guide for the design and analysis of experiments, discussing key considerations in detail (e.g., antibody library preparation, analysis strategies, etc.) that may vary depending on the research question being addressed.


Subject(s)
DNA Replication , Cell Cycle/physiology , Cell Division , Cell Cycle Checkpoints , Fluorescent Antibody Technique
4.
bioRxiv ; 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37609254

ABSTRACT

Age-related macular degeneration (AMD), the leading cause of geriatric blindness, is a multi-factorial disease with retinal-pigmented epithelial (RPE) cell dysfunction as a central pathogenic driver. With RPE degeneration, lysosomal function is a core process that is disrupted. Transcription factors EB/E3 (TFEB/E3) tightly control lysosomal function; their disruption can cause aging disorders, such as AMD. Here, we show that induced pluripotent stem cells (iPSC)-derived RPE cells with the complement factor H variant [ CFH (Y402H)] have increased AKT2, which impairs TFEB/TFE3 nuclear translocation and lysosomal function. Increased AKT2 can inhibit PGC1α, which downregulates SIRT5, an AKT2 binding partner. SIRT5 and AKT2 co-regulate each other, thereby modulating TFEB-dependent lysosomal function in the RPE. Failure of the AKT2/SIRT5/TFEB pathway in the RPE induced abnormalities in the autophagy-lysosome cellular axis by upregulating secretory autophagy, thereby releasing a plethora of factors that likely contribute to drusen formation, a hallmark of AMD. Finally, overexpressing AKT2 in RPE cells in mice led to an AMD-like phenotype. Thus, targeting the AKT2/SIRT5/TFEB pathway could be a potential therapy for atrophic AMD.

5.
Microsc Microanal ; 29(Supplement_1): 969, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37613690
6.
Chemistry ; 29(40): e202301370, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37148504

ABSTRACT

Stabilization of a peptide conformation via stapling strategy may be realized by the reversible or more often irreversible connection of side chains being in mutually appropriate geometry. An incorporation of phenylboronic acid and sugar residues (fructonic or galacturonic acid), attached to two lysine side chains via amide bonds and separated by 2, 3, or 6 other residues in the C-terminal fragment of RNase A introduces the intramolecular interaction stabilizing the α-helical organization. The boronate ester stapling is stabilized in mild basic conditions and may be switched off by acidification leading to unfolded organization of the peptide chain. We investigated the possibility of using switchable stapling by mass spectrometry, NMR and UV-CD spectroscopies, and DFT calculations.


Subject(s)
Peptides , Peptides/chemistry , Protein Structure, Secondary , Esters/chemistry , Models, Molecular
7.
Elife ; 122023 04 05.
Article in English | MEDLINE | ID: mdl-37017303

ABSTRACT

Oriented cell divisions balance self-renewal and differentiation in stratified epithelia such as the skin epidermis. During peak epidermal stratification, the distribution of division angles among basal keratinocyte progenitors is bimodal, with planar and perpendicular divisions driving symmetric and asymmetric daughter cell fates, respectively. An apically restricted, evolutionarily conserved spindle orientation complex that includes the scaffolding protein LGN/Pins/Gpsm2 plays a central role in promoting perpendicular divisions and stratification, but why only a subset of cell polarize LGN is not known. Here, we demonstrate that the LGN paralog, AGS3/Gpsm1, is a novel negative regulator of LGN and inhibits perpendicular divisions. Static and ex vivo live imaging reveal that AGS3 overexpression displaces LGN from the apical cortex and increases planar orientations, while AGS3 loss prolongs cortical LGN localization and leads to a perpendicular orientation bias. Genetic epistasis experiments in double mutants confirm that AGS3 operates through LGN. Finally, clonal lineage tracing shows that LGN and AGS3 promote asymmetric and symmetric fates, respectively, while also influencing differentiation through delamination. Collectively, these studies shed new light on how spindle orientation influences epidermal stratification.


Subject(s)
Carrier Proteins , Cell Cycle Proteins , Animals , Cell Cycle Proteins/metabolism , Carrier Proteins/metabolism , Cell Division , Epidermis/metabolism , Cell Differentiation/genetics , Spindle Apparatus/metabolism , Cell Polarity , Mammals/metabolism
8.
Elife ; 122023 03 06.
Article in English | MEDLINE | ID: mdl-36876902

ABSTRACT

Antibiotic tolerance and antibiotic resistance are the two major obstacles to the efficient and reliable treatment of bacterial infections. Identifying antibiotic adjuvants that sensitize resistant and tolerant bacteria to antibiotic killing may lead to the development of superior treatments with improved outcomes. Vancomycin, a lipid II inhibitor, is a frontline antibiotic for treating methicillin-resistant Staphylococcus aureus and other Gram-positive bacterial infections. However, vancomycin use has led to the increasing prevalence of bacterial strains with reduced susceptibility to vancomycin. Here, we show that unsaturated fatty acids act as potent vancomycin adjuvants to rapidly kill a range of Gram-positive bacteria, including vancomycin-tolerant and resistant populations. The synergistic bactericidal activity relies on the accumulation of membrane-bound cell wall intermediates that generate large fluid patches in the membrane leading to protein delocalization, aberrant septal formation, and loss of membrane integrity. Our findings provide a natural therapeutic option that enhances vancomycin activity against difficult-to-treat pathogens, and the underlying mechanism may be further exploited to develop antimicrobials that target recalcitrant infection.


Subject(s)
Gram-Positive Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Vancomycin/pharmacology , Fatty Acids , Gram-Positive Bacterial Infections/microbiology , Microbial Sensitivity Tests
9.
Mol Syst Biol ; 18(9): e11087, 2022 09.
Article in English | MEDLINE | ID: mdl-36161508

ABSTRACT

The cellular decision governing the transition between proliferative and arrested states is crucial to the development and function of every tissue. While the molecular mechanisms that regulate the proliferative cell cycle are well established, we know comparatively little about what happens to cells as they diverge into cell cycle arrest. We performed hyperplexed imaging of 47 cell cycle effectors to obtain a map of the molecular architecture that governs cell cycle exit and progression into reversible ("quiescent") and irreversible ("senescent") arrest states. Using this map, we found multiple points of divergence from the proliferative cell cycle; identified stress-specific states of arrest; and resolved the molecular mechanisms governing these fate decisions, which we validated by single-cell, time-lapse imaging. Notably, we found that cells can exit into senescence from either G1 or G2; however, both subpopulations converge onto a single senescent state with a G1-like molecular signature. Cells can escape from this "irreversible" arrest state through the upregulation of G1 cyclins. This map provides a more comprehensive understanding of the overall organization of cell proliferation and arrest.


Subject(s)
Cyclins , Cell Cycle , Cell Cycle Checkpoints , Cell Division , Cell Proliferation , Cyclins/genetics , Cyclins/metabolism
10.
Nucleic Acids Res ; 50(8): 4355-4371, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35390161

ABSTRACT

A key role of chromatin kinases is to phosphorylate histone tails during mitosis to spatiotemporally regulate cell division. Vaccinia-related kinase 1 (VRK1) is a serine-threonine kinase that phosphorylates histone H3 threonine 3 (H3T3) along with other chromatin-based targets. While structural studies have defined how several classes of histone-modifying enzymes bind to and function on nucleosomes, the mechanism of chromatin engagement by kinases is largely unclear. Here, we paired cryo-electron microscopy with biochemical and cellular assays to demonstrate that VRK1 interacts with both linker DNA and the nucleosome acidic patch to phosphorylate H3T3. Acidic patch binding by VRK1 is mediated by an arginine-rich flexible C-terminal tail. Homozygous missense and nonsense mutations of this acidic patch recognition motif in VRK1 are causative in rare adult-onset distal spinal muscular atrophy. We show that these VRK1 mutations interfere with nucleosome acidic patch binding, leading to mislocalization of VRK1 during mitosis, thus providing a potential new molecular mechanism for pathogenesis.


Subject(s)
Histones , Nucleosomes , Chromatin/genetics , Cryoelectron Microscopy , DNA/genetics , DNA/metabolism , Histones/genetics , Histones/metabolism , Intracellular Signaling Peptides and Proteins , Phosphorylation , Protein Serine-Threonine Kinases , Threonine/metabolism
11.
Life Sci Alliance ; 5(5)2022 05.
Article in English | MEDLINE | ID: mdl-35173014

ABSTRACT

Cyclin E/CDK2 drives cell cycle progression from G1 to S phase. Despite the toxicity of cyclin E overproduction in mammalian cells, the cyclin E gene is overexpressed in some cancers. To further understand how cells can tolerate high cyclin E, we characterized non-transformed epithelial cells subjected to chronic cyclin E overproduction. Cells overproducing cyclin E, but not cyclins D or A, briefly experienced truncated G1 phases followed by a transient period of DNA replication origin underlicensing, replication stress, and impaired proliferation. Individual cells displayed substantial intercellular heterogeneity in cell cycle dynamics and CDK activity. Each phenotype improved rapidly despite high cyclin E-associated activity. Transcriptome analysis revealed adapted cells down-regulated a cohort of G1-regulated genes. Withdrawing cyclin E from adapted cells only partially reversed underlicensing indicating that adaptation is at least partly non-genetic. This study provides evidence that mammalian cyclin E/CDK inhibits origin licensing indirectly through premature S phase onset and provides mechanistic insight into the relationship between CDKs and licensing. It serves as an example of oncogene adaptation that may recapitulate molecular changes during tumorigenesis.


Subject(s)
Cyclin E/genetics , Cyclin E/metabolism , Cyclin-Dependent Kinase 2/genetics , Animals , Cell Cycle , Cell Division , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , DNA Replication , G1 Phase , Gene Expression/genetics , Gene Expression Regulation/genetics , Humans , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , S Phase
13.
Nucleic Acids Res ; 50(17): 9601-9620, 2022 09 23.
Article in English | MEDLINE | ID: mdl-35079814

ABSTRACT

Eukaryotic chromosomes contain regions of varying accessibility, yet DNA replication factors must access all regions. The first replication step is loading MCM complexes to license replication origins during the G1 cell cycle phase. It is not yet known how mammalian MCM complexes are adequately distributed to both accessible euchromatin regions and less accessible heterochromatin regions. To address this question, we combined time-lapse live-cell imaging with immunofluorescence imaging of single human cells to quantify the relative rates of MCM loading in euchromatin and heterochromatin throughout G1. We report here that MCM loading in euchromatin is faster than that in heterochromatin in early G1, but surprisingly, heterochromatin loading accelerates relative to euchromatin loading in middle and late G1. This differential acceleration allows both chromatin types to begin S phase with similar concentrations of loaded MCM. The different loading dynamics require ORCA-dependent differences in origin recognition complex distribution. A consequence of heterochromatin licensing dynamics is that cells experiencing a truncated G1 phase from premature cyclin E expression enter S phase with underlicensed heterochromatin, and DNA damage accumulates preferentially in heterochromatin in the subsequent S/G2 phase. Thus, G1 length is critical for sufficient MCM loading, particularly in heterochromatin, to ensure complete genome duplication and to maintain genome stability.


In this study the authors have, for the first time, quantified DNA replication origin licensing dynamics and distribution in single cells at subnuclear resolution. The cell cycle and DNA replication fields have long appreciated that origin licensing is both absolutely essential for replication and that licensing is strictly confined to G1 phase. The biochemical process of origin licensing- which is the DNA loading of MCM complexes- is known in considerable detail. What has never been explored in any system, is the dynamics of origin licensing itself. Here the authors define the dynamics of human MCM loading at different times within G1 in both euchromatin and heterochromatin, and explore the consequences of those dynamics for genome stability.


Subject(s)
Chromatin , DNA Replication , Minichromosome Maintenance Proteins/metabolism , Animals , Cell Cycle , Cell Cycle Proteins/metabolism , Chromatin/metabolism , Euchromatin , Eukaryotic Cells , Heterochromatin , Humans , Origin Recognition Complex/metabolism , Replication Origin
14.
Cell Syst ; 13(3): 230-240.e3, 2022 03 16.
Article in English | MEDLINE | ID: mdl-34800361

ABSTRACT

Understanding the organization of the cell cycle has been a longstanding goal in cell biology. We combined time-lapse microscopy, highly multiplexed single-cell imaging of 48 core cell cycle proteins, and manifold learning to render a visualization of the human cell cycle. This data-driven approach revealed the comprehensive "structure" of the cell cycle: a continuum of molecular states that cells occupy as they transition from one cell division to the next, or as they enter or exit cell cycle arrest. Paradoxically, progression deeper into cell cycle arrest was accompanied by increases in proliferative effectors such as CDKs and cyclins, which can drive cell cycle re-entry by overcoming p21 induction. The structure also revealed the molecular trajectories into senescence and the unique combination of molecular features that define this irreversibly arrested state. This approach will enable the comparison of alternative cell cycles during development, in response to environmental perturbation and in disease. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Cyclin-Dependent Kinases , Cyclins , Cell Cycle , Cell Cycle Checkpoints , Cell Division , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , Humans
15.
ACS Chem Biol ; 16(7): 1243-1254, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34232632

ABSTRACT

The complex reservoir of metabolite-producing bacteria in the gastrointestinal tract contributes tremendously to human health and disease. Bacterial composition, and by extension gut metabolomic composition, is undoubtably influenced by the use of modern antibiotics. Herein, we demonstrate that polymyxin B, a last resort antibiotic, influences the production of the genotoxic metabolite colibactin from adherent-invasive Escherichia coli (AIEC) NC101. Colibactin can promote colorectal cancer through DNA double stranded breaks and interstrand cross-links. While the structure and biosynthesis of colibactin have been elucidated, chemical-induced regulation of its biosynthetic gene cluster and subsequent production of the genotoxin by E. coli are largely unexplored. Using a multiomic approach, we identified that polymyxin B stress enhances the abundance of colibactin biosynthesis proteins (Clb's) in multiple pks+ E. coli strains, including pro-carcinogenic AIEC, NC101; the probiotic strain, Nissle 1917; and the antibiotic testing strain, ATCC 25922. Expression analysis via qPCR revealed that increased transcription of clb genes likely contributes to elevated Clb protein levels in NC101. Enhanced production of Clb's by NC101 under polymyxin stress matched an increased production of the colibactin prodrug motif, a proxy for the mature genotoxic metabolite. Furthermore, E. coli with a heightened tolerance for polymyxin induced greater mammalian DNA damage, assessed by quantification of γH2AX staining in cultured intestinal epithelial cells. This study establishes a key link between the polymyxin B stress response and colibactin production in pks+ E. coli. Ultimately, our findings will inform future studies investigating colibactin regulation and the ability of seemingly innocuous commensal microbes to induce host disease.


Subject(s)
Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Peptides/drug effects , Polymyxins/pharmacology , Animals , Biological Evolution , Cell Line , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Genes, Bacterial/drug effects , Multigene Family/drug effects , Mutagens/metabolism , Peptide Synthases/genetics , Peptides/metabolism , Polyketide Synthases/genetics , Polyketides/metabolism , Rats , Up-Regulation/drug effects
16.
Biofilm ; 3: 100049, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34124645

ABSTRACT

Bacterial biofilms, often associated with chronic infections, respond poorly to antibiotic therapy and frequently require surgical intervention. Biofilms harbor persister cells, metabolically indolent cells, which are tolerant to most conventional antibiotics. In addition, the biofilm matrix can act as a physical barrier, impeding diffusion of antibiotics. Novel therapeutic approaches frequently improve biofilm killing, but usually fail to achieve eradication. Failure to eradicate the biofilm leads to chronic and relapsing infection, is associated with major financial healthcare costs and significant morbidity and mortality. We address this problem with a two-pronged strategy using 1) antibiotics that target persister cells and 2) ultrasound-stimulated phase-change contrast agents (US-PCCA), which improve antibiotic penetration. We previously demonstrated that rhamnolipids, produced by Pseudomonas aeruginosa, could induce aminoglycoside uptake in gram-positive organisms, leading to persister cell death. We have also shown that US-PCCA can transiently disrupt biological barriers to improve penetration of therapeutic macromolecules. We hypothesized that combining antibiotics which target persister cells with US-PCCA to improve drug penetration could improve treatment of methicillin resistant S. aureus (MRSA) biofilms. Aminoglycosides alone or in combination with US-PCCA displayed limited efficacy against MRSA biofilms. In contrast, the anti-persister combination of rhamnolipids and aminoglycosides combined with US-PCCA dramatically improved biofilm killing. This novel treatment strategy has the potential for rapid clinical translation as the PCCA formulation is a variant of FDA-approved ultrasound contrast agents that are already in clinical practice and the low-pressure ultrasound settings used in our study can be achieved with existing ultrasound hardware at pressures below the FDA set limits for diagnostic imaging.

17.
Nucleic Acids Res ; 48(17): 9415-9432, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32658293

ABSTRACT

Nuclear proteins bind chromatin to execute and regulate genome-templated processes. While studies of individual nucleosome interactions have suggested that an acidic patch on the nucleosome disk may be a common site for recruitment to chromatin, the pervasiveness of acidic patch binding and whether other nucleosome binding hot-spots exist remain unclear. Here, we use nucleosome affinity proteomics with a library of nucleosomes that disrupts all exposed histone surfaces to comprehensively assess how proteins recognize nucleosomes. We find that the acidic patch and two adjacent surfaces are the primary hot-spots for nucleosome disk interactions, whereas nearly half of the nucleosome disk participates only minimally in protein binding. Our screen defines nucleosome surface requirements of nearly 300 nucleosome interacting proteins implicated in diverse nuclear processes including transcription, DNA damage repair, cell cycle regulation and nuclear architecture. Building from our screen, we demonstrate that the Anaphase-Promoting Complex/Cyclosome directly engages the acidic patch, and we elucidate a redundant mechanism of acidic patch binding by nuclear pore protein ELYS. Overall, our interactome screen illuminates a highly competitive nucleosome binding hub and establishes universal principles of nucleosome recognition.


Subject(s)
Nucleosomes/metabolism , Proteins/metabolism , Anaphase-Promoting Complex-Cyclosome/metabolism , Binding Sites , Chromatin/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histones/genetics , Histones/metabolism , Humans , Metaphase , Mutation , Proteomics/methods , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Nat Struct Mol Biol ; 27(6): 550-560, 2020 06.
Article in English | MEDLINE | ID: mdl-32393902

ABSTRACT

The interplay between E2 and E3 enzymes regulates the polyubiquitination of substrates in eukaryotes. Among the several RING-domain E3 ligases in humans, many utilize two distinct E2s for polyubiquitination. For example, the cell cycle regulatory E3, human anaphase-promoting complex/cyclosome (APC/C), relies on UBE2C to prime substrates with ubiquitin (Ub) and on UBE2S to extend polyubiquitin chains. However, the potential coordination between these steps in ubiquitin chain formation remains undefined. While numerous studies have unveiled how RING E3s stimulate individual E2s for Ub transfer, here we change perspective to describe a case where the chain-elongating E2 UBE2S feeds back and directly stimulates the E3 APC/C to promote substrate priming and subsequent multiubiquitination by UBE2C. Our work reveals an unexpected model for the mechanisms of RING E3-dependent ubiquitination and for the diverse and complex interrelationship between components of the ubiquitination cascade.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Anaphase-Promoting Complex-Cyclosome/chemistry , Anaphase-Promoting Complex-Cyclosome/genetics , Apc4 Subunit, Anaphase-Promoting Complex-Cyclosome/chemistry , Apc4 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Apc4 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cytidine Triphosphate/metabolism , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , HeLa Cells , Humans , Polyubiquitin/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligases/chemistry , Ubiquitination
19.
FEBS Lett ; 593(20): 2805-2816, 2019 10.
Article in English | MEDLINE | ID: mdl-31566708

ABSTRACT

Progression through the cell cycle is driven by bistable switches-specialized molecular circuits that govern transitions from one cellular state to another. Although the mechanics of bistable switches are relatively well understood, it is less clear how cells integrate multiple sources of molecular information to engage these switches. Here, we describe how bistable switches act as hubs of information processing and examine how variability, competition, and inheritance of molecular signals determine the timing of the Rb-E2F bistable switch that controls cell cycle entry. Bistable switches confer both robustness and plasticity to cell cycle progression, ensuring that cell cycle events are performed completely and in the correct order, while still allowing flexibility to cope with ongoing stress and changing environmental conditions.


Subject(s)
Cell Cycle Checkpoints/genetics , Cell Cycle/genetics , Cyclin-Dependent Kinases/genetics , DNA Repair , E2F Transcription Factors/genetics , Retinoblastoma Protein/genetics , Animals , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cyclin-Dependent Kinases/metabolism , DNA Damage/drug effects , DNA Repair/drug effects , DNA Replication/drug effects , E2F Transcription Factors/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/drug effects , Eukaryotic Cells/metabolism , Gene Expression Regulation , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Mitogens/pharmacology , Retinoblastoma Protein/metabolism , Signal Transduction
20.
Stem Cell Res ; 38: 101470, 2019 07.
Article in English | MEDLINE | ID: mdl-31170660

ABSTRACT

Here we utilized the chromatin in vivo assay (CiA) mouse platform to directly examine the epigenetic barriers impeding the activation of the CiA:Oct4 allele in mouse embryonic fibroblasts (MEF)s when stimulated with a transcription factor. The CiA:Oct4 allele contains an engineered EGFP reporter replacing one copy of the Oct4 gene, with an upstream Gal4 array in the promoter that allows recruitment of chromatin modifying machinery. We stimulated gene activation of the CiA:Oct4 allele by binding a transcriptional activator to the Gal4 array. As with cellular reprograming, this process is inefficient with only a small percentage of the cells re-activating CiA:Oct4 after weeks. Epigenetic barriers to gene activation potentially come from heavy DNA methylation, histone deacetylation, chromatin compaction, and other posttranslational marks (PTM) at the differentiated CiA:Oct4 allele in MEFs. Using this platform, we performed a high-throughput chemical screen for compounds that increased the efficiency of activation. We found that Azacytidine and newer generation histone deacetylase (HDAC) inhibitors were the most efficient at facilitating directed transcriptional activation of this allele. We found one hit form our screen, Mocetinostat, improved iPSC generation under transcription factor reprogramming conditions. These results separate individual allele activation from whole cell reprograming and give new insights that will advance tissue engineering.


Subject(s)
Alleles , Chromatin/metabolism , DNA Methylation , Epigenesis, Genetic , Induced Pluripotent Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , Transcriptional Activation , Animals , Chromatin/genetics , Histone Deacetylase Inhibitors , Induced Pluripotent Stem Cells/cytology , Mice , Octamer Transcription Factor-3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...