Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2967: 181-192, 2023.
Article in English | MEDLINE | ID: mdl-37608112

ABSTRACT

Polymerase chain reaction (PCR) is a laboratory technique used to amplify a targeted region of DNA, demarcated by a set of oligonucleotide primers. Long-range PCR is a form of PCR optimized to facilitate the amplification of large fragments. Using the adapted long-range PCR protocol described in this chapter, we were able to generate PCR products of 6.6, 7.2, 13, and 20 kb from human genomic DNA samples. For some of the long PCRs, successful amplification was not possible without the use of PCR enhancers. Thus, we also evaluated the impact of some enhancers on long-range PCR and included the findings as part of this updated chapter.


Subject(s)
Polymerase Chain Reaction , Humans , DNA Primers/genetics , Data Collection
2.
Front Pharmacol ; 14: 1080117, 2023.
Article in English | MEDLINE | ID: mdl-36895946

ABSTRACT

Pharmacogenetics has potential for optimizing use of psychotropics. CYP2D6 and CYP2C19 are two clinically relevant pharmacogenes in the prescribing of antidepressants. Using cases recruited from the Understanding Drug Reactions Using Genomic Sequencing (UDRUGS) study, we aimed to evaluate the clinical utility of genotyping CYP2D6 and CYP2C19 in antidepressant response. Genomic and clinical data for patients who were prescribed antidepressants for mental health disorders, and experienced adverse reactions (ADRs) or ineffectiveness, were extracted for analysis. Genotype-inferred phenotyping of CYP2D6 and CYP2C19 was carried out as per Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines. A total of 52 patients, predominantly New Zealand Europeans (85%) with a median age (range) of 36 years (15-73), were eligible for analysis. Thirty-one (60%) reported ADRs, 11 (21%) ineffectiveness, and 10 (19%) reported both. There were 19 CYP2C19 NMs, 15 IMs, 16 RMs, one PM and one UM. For CYP2D6, there were 22 NMs, 22 IMs, four PMs, three UMs, and one indeterminate. CPIC assigned a level to each gene-drug pair based on curated genotype-to-phenotype evidence. We analyzed a subgroup of 45 cases, inclusive of response type (ADRs/ineffectiveness). Seventy-nine (N = 37 for CYP2D6, N = 42 for CYP2C19) gene-drug/antidepressant-response pairs with CPIC evidence levels of A, A/B, or B were identified. Pairs were assigned as 'actionable' if the CYP phenotypes potentially contributed to the observed response. We observed actionability in 41% (15/37) of CYP2D6-antidepressant-response pairs and 36% (15/42) of CYP2C19-antidepressant-response pairs. In this cohort, CYP2D6 and CYP2C19 genotypes were actionable for a total of 38% pairs, consisting of 48% in relation to ADRs and 21% in relation to drug ineffectiveness.

3.
Front Genet ; 13: 1016416, 2022.
Article in English | MEDLINE | ID: mdl-36313436

ABSTRACT

The enzyme cytochrome P450 2D6 (CYP2D6) metabolises approximately 25% of commonly prescribed drugs, including analgesics, anti-hypertensives, and anti-depressants, among many others. Genetic variation in drug metabolising genes can alter how an individual responds to prescribed drugs, including predisposing to adverse drug reactions. The majority of research on the CYP2D6 gene has been carried out in European and East Asian populations, with many Indigenous and minority populations, such as those from Oceania, greatly underrepresented. However, genetic variation is often population specific and analysis of diverse ethnic groups can reveal differences in alleles that may be of clinical significance. For this reason, we set out to examine the range and frequency of CYP2D6 variants in a sample of 202 Maori and Pacific people living in Aotearoa (New Zealand). We carried out long PCR to isolate the CYP2D6 region before performing nanopore sequencing to identify all variants and alleles in these samples. We identified twelve variants which have previously not been reported in the PharmVar CYP2D6 database, three of which were exonic missense variations. Six of these occurred in single samples and one was found in 19 samples (9.4% of the cohort). The remaining five variants were identified in two samples each. Identified variants formed twelve new CYP2D6 suballeles and four new star alleles, now recorded in the PharmVar database. One striking finding was that CYP2D6*71, an allele of uncertain functional status which has been rarely observed in previous studies, occurs at a relatively high frequency (8.9%) within this cohort. These data will help to ensure that CYP2D6 genetic analysis for pharmacogenetic purposes can be carried out accurately and effectively in this population group.

4.
Front Genet ; 13: 869160, 2022.
Article in English | MEDLINE | ID: mdl-35664313

ABSTRACT

Omeprazole is extensively used to manage gastroesophageal reflux disease (GERD). It is primarily metabolized by CYP2C19. The CYP2C19*17 (rs12248560) allele and the recently described CYP2C:TG haplotype (rs11188059 and rs2860840) are associated with increased enzymatic activity, and may reduce omeprazole exposure. This observational study aimed to investigate the association between these genetic variants and omeprazole treatment failure in GERD. We recruited predominantly New Zealand European GERD patients who either did not respond to omeprazole or experienced breakthrough heartburn symptoms despite at least 8 weeks of omeprazole (≥40 mg/day). The GerdQ score was used to gauge symptomatic severity. A total of 55 cases were recruited with a median age (range) of 56 years (19-82) and GerdQ score of 11 (5-17). Of these, 19 (34.5%) were CYP2C19*17 heterozygotes and two (3.6%) were CYP2C19*17 homozygotes. A total of 30 (27.3%) CYP2C:TG haplotypes was identified in our cohort, with seven (12.7%) CYP2C:TG homozygotes, and 16 (29%) CYP2C:TG heterozygotes. No significant differences were observed for overall CYP2C19*17 alleles, CYP2C19*17/*17, overall CYP2C:TG haplotypes, and CYP2C:TG heterozygotes (p > 0.05 for all comparisons). Gastroscopy and 24-h esophageal pH/impedance tests demonstrated objective evidence of GERD in a subgroup of 39 (71%) cases, in which the CYP2C:TG/TG was significantly enriched (p = 0.03) when compared with the haplotype frequencies in a predominantly (91%) New Zealand European reference population, but not the CYP2C19*17/*17 (p > 0.99), when compared with the allele frequencies for the non-Finnish European subset of gnomAD. We conclude that omeprazole treatment failure in GERD is associated with CYP2C:TG/TG, but not CYP2C19*17.

5.
Biochimie ; 197: 130-143, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35231536

ABSTRACT

Polymerase chain reaction is an important tool in molecular biology. Although the principles of the technique are relatively simple, amplifying complex or long DNA segments can be challenging. A variety of PCR additives are used to improve the performance and yield of difficult PCRs. Each PCR additive has unique properties and enhances PCR through a different mode of action. They are used to either improve PCR sensitivity, efficiency, and specificity, or mitigate the effects of PCR inhibitors. In this review, we categorise known PCR additives into four main groups. The first three groups comprise PCR additives with well-defined mechanisms, namely those that facilitate the amplification of GC-rich sequences, counteract the detrimental effects of PCR inhibitors, or alter PCR kinetics (nanomaterials). The fourth group is a loose mix of additives with unclear mechanisms of action. Then, we discuss how these additives may be used to tackle specific PCR-related challenges, particularly those associated with long-range PCR. We conclude the review with added insights into the use of PCR additives in enhancing the synthesis of complex and long DNA fragments.


Subject(s)
DNA , Regulatory Sequences, Nucleic Acid , DNA/genetics , GC Rich Sequence , Polymerase Chain Reaction/methods
6.
Front Genet ; 11: 575678, 2020.
Article in English | MEDLINE | ID: mdl-33193687

ABSTRACT

Statins, a class of lipid-lowering medications, have been a keystone treatment in cardiovascular health. However, adverse effects associated with statin use impact patient adherence, leading to statin discontinuation. Statin-induced myotoxicity (SIM) is one of the most common adverse effects, prevalent across all ages, genders, and ethnicities. Although certain demographic cohorts carry a higher risk, the impaired quality of life attributed to SIM is significant. The pathogenesis of SIM remains to be fully elucidated, but it is clear that SIM is multifactorial. These factors include drug-drug interactions, renal or liver dysfunction, and genetics. Genetic-inferred risk for SIM was first reported by a landmark genome-wide association study, which reported a higher risk of SIM with a polymorphism in the SLCO1B1 gene. Since then, research associating genetic factors with SIM has expanded widely and has become one of the foci in the field of pharmacogenomics. This review provides an update on the genetic risk factors associated with SIM.

SELECTION OF CITATIONS
SEARCH DETAIL
...