Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Geroscience ; 46(2): 2153-2176, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37872294

ABSTRACT

Skeletal muscle adaptation to external stimuli, such as regeneration following injury and hypertrophy in response to resistance exercise, are blunted with advanced age. The accumulation of senescent cells, along with defects in myogenic progenitor cell (MPC) proliferation, have been strongly linked as contributing factors to age-associated impairment in muscle adaptation. p53 plays an integral role in all these processes, as upregulation of p53 causes apoptosis in senescent cells and prevents mitotic catastrophe in MPCs from old mice. The goal of this study was to determine if a novel pharmaceutical agent (BI01), which functions by upregulating p53 through inhibition of binding to MDM2, the primary p53 regulatory protein, improves muscle regeneration and hypertrophy in old mice. BI01 effectively reduced the number of senescent cells in vitro but had no effect on MPC survival or proliferation at a comparable dose. Following repeated oral gavage with 2 mg/kg of BI01 (OS) or vehicle (OV), old mice (24 months) underwent unilateral BaCl2 injury in the tibialis anterior (TA) muscle, with PBS injections serving as controls. After 7 days, satellite cell number was higher in the TA of OS compared to OV mice, as was the expression of genes involved in ATP production. By 35 days, old mice treated with BI01 displayed reduced senescent cell burden, enhanced regeneration (higher muscle mass and fiber cross-sectional area) and restoration of muscle function relative to OV mice. To examine the impact of 2 mg/kg BI01 on muscle hypertrophy, the plantaris muscle was subjected to 28 days of mechanical overload (MOV) in OS and OV mice. In response to MOV, OS mice had larger plantaris muscles and muscle fibers than OV mice, particularly type 2b + x fibers, associated with reduced senescent cells. Together our data show that BI01 is an effective senolytic agent that may also augment muscle metabolism to enhance muscle regeneration and hypertrophy in old mice.


Subject(s)
Muscle, Skeletal , Tumor Suppressor Protein p53 , Animals , Mice , Cellular Senescence , Hypertrophy , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/pharmacology
2.
Free Radic Biol Med ; 212: 191-198, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38154571

ABSTRACT

Oxidative stress has been implicated in the etiology of skeletal muscle weakness following joint injury. We investigated longitudinal patient muscle samples following knee injury (anterior cruciate ligament tear). Following injury, transcriptomic analysis revealed downregulation of mitochondrial metabolism-related gene networks, which were supported by reduced mitochondrial respiratory flux rates. Additionally, enrichment of reactive oxygen species (ROS)-related pathways were upregulated in muscle following knee injury, and further investigation unveiled marked oxidative damage in a progressive manner following injury and surgical reconstruction. We then investigated whether antioxidant protection is effective in preventing muscle atrophy and weakness after knee injury in mice that overexpress Mn-superoxide dismutase (MnSOD+/-). MnSOD+/- mice showed attenuated oxidative damage, atrophy, and muscle weakness compared to wild type littermate controls following ACL transection surgery. Taken together, our results indicate that ROS-related damage is a causative mechanism of muscle dysfunction after knee injury, and that mitochondrial antioxidant protection may hold promise as a therapeutic target to prevent weakness and development of disability.


Subject(s)
Anterior Cruciate Ligament Injuries , Knee Injuries , Humans , Mice , Animals , Anterior Cruciate Ligament Injuries/complications , Anterior Cruciate Ligament Injuries/genetics , Anterior Cruciate Ligament Injuries/surgery , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/prevention & control , Muscle Weakness/genetics , Muscle Weakness/complications , Knee Injuries/complications , Knee Injuries/surgery , Oxidative Stress/physiology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
3.
Sci Adv ; 9(48): eadi9134, 2023 12.
Article in English | MEDLINE | ID: mdl-38019905

ABSTRACT

Musculoskeletal disorders contribute substantially to worldwide disability. Anterior cruciate ligament (ACL) tears result in unresolved muscle weakness and posttraumatic osteoarthritis (PTOA). Growth differentiation factor 8 (GDF8) has been implicated in the pathogenesis of musculoskeletal degeneration following ACL injury. We investigated GDF8 levels in ACL-injured human skeletal muscle and serum and tested a humanized monoclonal GDF8 antibody against a placebo in a mouse model of PTOA (surgically induced ACL tear). In patients, muscle GDF8 was predictive of atrophy, weakness, and periarticular bone loss 6 months following surgical ACL reconstruction. In mice, GDF8 antibody administration substantially mitigated muscle atrophy, weakness, and fibrosis. GDF8 antibody treatment rescued the skeletal muscle and articular cartilage transcriptomic response to ACL injury and attenuated PTOA severity and deficits in periarticular bone microarchitecture. Furthermore, GDF8 genetic deletion neutralized musculoskeletal deficits in response to ACL injury. Our findings support an opportunity for rapid targeting of GDF8 to enhance functional musculoskeletal recovery and mitigate the severity of PTOA after injury.


Subject(s)
Anterior Cruciate Ligament Injuries , Osteoarthritis , Animals , Humans , Mice , Anterior Cruciate Ligament Injuries/complications , Anterior Cruciate Ligament Injuries/drug therapy , Anterior Cruciate Ligament Injuries/surgery , Disease Models, Animal , Muscle, Skeletal/pathology , Myostatin/genetics , Osteoarthritis/drug therapy , Osteoarthritis/etiology , Osteoarthritis/pathology
4.
JBMR Plus ; 7(11): e10833, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38025035

ABSTRACT

Type 1 diabetes (T1D) is associated with low bone and muscle mass, increased fracture risk, and impaired skeletal muscle function. Myostatin, a myokine that is systemically elevated in humans with T1D, negatively regulates muscle mass and bone formation. We investigated whether pharmacologic myostatin inhibition in a mouse model of insulin-deficient, streptozotocin (STZ)-induced diabetes is protective for bone and skeletal muscle. DBA/2J male mice were injected with low-dose STZ (diabetic) or vehicle (non-diabetic). Subsequently, insulin or palmitate Linbits were implanted and myostatin (REGN647-MyoAb) or control (REGN1945-ConAb) antibody was administered for 8 weeks. Body composition and contractile muscle function were assessed in vivo. Systemic myostatin, P1NP, CTX-I, and glycated hemoglobin (HbA1c) were quantified, and gastrocnemii were weighed and analyzed for muscle fiber composition and gene expression of selected genes. Cortical and trabecular parameters were analyzed (micro-computed tomography evaluations of femur) and cortical bone strength was assessed (three-point bending test of femur diaphysis). In diabetic mice, the combination of insulin/MyoAb treatment resulted in significantly higher lean mass and gastrocnemius weight compared with MyoAb or insulin treatment alone. Similarly, higher raw torque was observed in skeletal muscle of insulin/MyoAb-treated diabetic mice compared with MyoAb or insulin treatment. Additionally, muscle fiber cross-sectional area (CSA) was lower with diabetes and the combination treatment with insulin/MyoAb significantly improved CSA in type II fibers. Insulin, MyoAb, or insulin/MyoAb treatment improved several parameters of trabecular architecture (eg, bone volume fraction [BV/TV], trabecular connectivity density [Conn.D]) and cortical structure (eg, cortical bone area [Ct. Ar.], minimum moment of inertia [Imin]) in diabetic mice. Lastly, cortical bone biomechanical properties (stiffness and yield force) were also improved with insulin or MyoAb treatment. In conclusion, pharmacologic myostatin inhibition is beneficial for muscle mass, muscle function, and bone properties in this mouse model of T1D and its effects are both independent and additive to the positive effects of insulin. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

5.
JCI Insight ; 8(23)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37856482

ABSTRACT

BACKGROUNDAlthough 25-hydroxyvitamin D [25(OH)D] concentrations of 30 ng/mL or higher are known to reduce injury risk and boost strength, the influence on anterior cruciate ligament reconstruction (ACLR) outcomes remains unexamined. This study aimed to define the vitamin D signaling response to ACLR, assess the relationship between vitamin D status and muscle fiber cross-sectional area (CSA) and bone density outcomes, and discover vitamin D receptor (VDR) targets after ACLR.METHODSTwenty-one young, healthy, physically active participants with recent ACL tears were enrolled (17.8 ± 3.2 years, BMI 26.0 ± 3.5 kg/m2). Data were collected through blood samples, vastus lateralis biopsies, dual energy x-ray bone density measurements, and isokinetic dynamometer measures at baseline, 1 week, 4 months, and 6 months after ACLR. The biopsies facilitated CSA, Western blotting, RNA-seq, and VDR ChIP-seq analyses.RESULTSACLR surgery led to decreased circulating bioactive vitamin D and increased VDR and activating enzyme expression in skeletal muscle 1 week after ACLR. Participants with less than 30 ng/mL 25(OH)D levels (n = 13) displayed more significant quadriceps fiber CSA loss 1 week and 4 months after ACLR than those with 30 ng/mL or higher (n = 8; P < 0.01 for post hoc comparisons; P = 0.041 for time × vitamin D status interaction). RNA-seq and ChIP-seq data integration revealed genes associated with energy metabolism and skeletal muscle recovery, potentially mediating the impact of vitamin D status on ACLR recovery. No difference in bone mineral density losses between groups was observed.CONCLUSIONCorrecting vitamin D status prior to ACLR may aid in preserving skeletal muscle during recovery.FUNDINGNIH grants R01AR072061, R01AR071398-04S1, and K99AR081367.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Humans , Muscle Strength/physiology , Muscle, Skeletal/physiology , Quadriceps Muscle/physiology , Quadriceps Muscle/surgery , Anterior Cruciate Ligament Injuries/surgery , Vitamin D
6.
Aging Cell ; 22(11): e13936, 2023 11.
Article in English | MEDLINE | ID: mdl-37486024

ABSTRACT

Muscle inflammation and fibrosis underlie disuse-related complications and may contribute to impaired muscle recovery in aging. Cellular senescence is an emerging link between inflammation, extracellular matrix (ECM) remodeling and poor muscle recovery after disuse. In rodents, metformin has been shown to prevent cellular senescence/senescent associated secretory phenotype (SASP), inflammation, and fibrosis making it a potentially practical therapeutic solution. Thus, the purpose of this study was to determine in older adults if metformin monotherapy during bed rest could reduce muscle fibrosis and cellular senescence/SASP during the re-ambulation period. A two-arm controlled trial was utilized in healthy male and female older adults (n = 20; BMI: <30, age: 60 years+) randomized into either placebo or metformin treatment during a two-week run-in and 5 days of bedrest followed by metformin withdrawal during 7 days of recovery. We found that metformin-treated individuals had less type-I myofiber atrophy during disuse, reduced pro-inflammatory transcriptional profiles, and lower muscle collagen deposition during recovery. Collagen content and myofiber size corresponded to reduced whole muscle cellular senescence and SASP markers. Moreover, metformin treatment reduced primary muscle resident fibro-adipogenic progenitors (FAPs) senescent markers and promoted a shift in fibroblast fate to be less myofibroblast-like. Together, these results suggest that metformin pre-treatment improved ECM remodeling after disuse in older adults by possibly altering cellular senescence and SASP in skeletal muscle and in FAPs.


Subject(s)
Metformin , Male , Female , Humans , Metformin/pharmacology , Metformin/therapeutic use , Senescence-Associated Secretory Phenotype , Cellular Senescence/genetics , Muscle, Skeletal , Inflammation , Walking , Collagen , Fibrosis
7.
Am J Sports Med ; 51(1): 81-96, 2023 01.
Article in English | MEDLINE | ID: mdl-36475881

ABSTRACT

BACKGROUND: Anterior cruciate ligament (ACL) tear (ACLT) leads to protracted quadriceps muscle atrophy. Protein turnover largely dictates muscle size and is highly responsive to injury and loading. Regulation of quadriceps molecular protein synthetic machinery after ACLT has largely been unexplored, limiting development of targeted therapies. PURPOSE: To define the effect of ACLT on (1) the activation of protein synthetic and catabolic signaling within quadriceps biopsy specimens from human participants and (2) the time course of alterations to protein synthesis and its molecular regulation in a mouse ACL injury model. STUDY DESIGN: Descriptive laboratory study. METHODS: Muscle biopsy specimens were obtained from the ACL-injured and noninjured vastus lateralis of young adult humans after an overnight fast (N = 21; mean ± SD, 19 ± 5 years). Mice had their limbs assigned to ACLT or control, and whole quadriceps were collected 6 hours or 1, 3, or 7 days after injury with puromycin injected before tissue collection for assessment of relative protein synthesis. Muscle fiber size and expression and phosphorylation of protein anabolic and catabolic signaling proteins were assessed at the protein and transcript levels (RNA sequencing). RESULTS: Human quadriceps showed reduced phosphorylation of ribosomal protein S6 (-41%) in the ACL-injured limb (P = .008), in addition to elevated phosphorylation of eukaryotic initiation factor 2α (+98%; P = .006), indicative of depressed protein anabolic signaling in the injured limb. No differences in E3 ubiquitin ligase expression were noted. Protein synthesis was lower at 1 day (P = .01 vs control limb) and 3 days (P = .002 vs control limb) after ACLT in mice. Pathway analyses revealed shared molecular alterations between human and mouse quadriceps after ACLT. CONCLUSION: (1) Global protein synthesis and anabolic signaling deficits occur in the quadriceps in response to ACL injury, without notable changes in measured markers of muscle protein catabolism. (2) Importantly, these deficits occur before the onset of significant atrophy, underscoring the need for early intervention. CLINICAL RELEVANCE: These findings suggest that blunted protein anabolism as opposed to increased catabolism likely mediates quadriceps atrophy after ACL injury. Thus, future interventions should aim to restore muscle protein anabolism rapidly after ACLT.


Subject(s)
Anterior Cruciate Ligament Injuries , Young Adult , Humans , Mice , Animals , Anterior Cruciate Ligament Injuries/pathology , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Quadriceps Muscle/physiology , Muscle Fibers, Skeletal , Muscle Proteins
8.
Function (Oxf) ; 3(4): zqac027, 2022.
Article in English | MEDLINE | ID: mdl-35774589

ABSTRACT

Murine exercise models can provide information on factors that influence muscle adaptability with aging, but few translatable solutions exist. Progressive weighted wheel running (PoWeR) is a simple, voluntary, low-cost, high-volume endurance/resistance exercise approach for training young mice. In the current investigation, aged mice (22-mo-old) underwent a modified version of PoWeR for 8 wk. Muscle functional, cellular, biochemical, transcriptional, and myonuclear DNA methylation analyses provide an encompassing picture of how muscle from aged mice responds to high-volume combined training. Mice run 6-8 km/d, and relative to sedentary mice, PoWeR increases plantarflexor muscle strength. The oxidative soleus of aged mice responds to PoWeR similarly to young mice in every parameter measured in previous work; this includes muscle mass, glycolytic-to-oxidative fiber type transitioning, fiber size, satellite cell frequency, and myonuclear number. The oxidative/glycolytic plantaris adapts according to fiber type, but with modest overall changes in muscle mass. Capillarity increases markedly with PoWeR in both muscles, which may be permissive for adaptability in advanced age. Comparison to published PoWeR RNA-sequencing data in young mice identified conserved regulators of adaptability across age and muscles; this includes Aldh1l1 which associates with muscle vasculature. Agrn and Samd1 gene expression is upregulated after PoWeR simultaneous with a hypomethylated promoter CpG in myonuclear DNA, which could have implications for innervation and capillarization. A promoter CpG in Rbm10 is hypomethylated by late-life exercise in myonuclei, consistent with findings in muscle tissue. PoWeR and the data herein are a resource for uncovering cellular and molecular regulators of muscle adaptation with aging.


Subject(s)
Muscle Fibers, Skeletal , Physical Conditioning, Animal , Mice , Animals , Muscle Fibers, Skeletal/metabolism , Motor Activity , Muscle, Skeletal/blood supply , Physical Conditioning, Animal/physiology , Adaptation, Physiological/genetics
9.
J Appl Physiol (1985) ; 133(3): 572-584, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35834627

ABSTRACT

Skeletal muscle aging is a multidimensional pathology of atrophy, reduced strength, and oxidative damage. Although some molecular targets may mediate both hypertrophic and oxidative adaptations in muscle, their responsiveness in humans and relationship with functional outcomes like strength remain unclear. Promising therapeutic targets to combat muscle aging like apelin, vitamin D receptor (VDR), and spermine oxidase (SMOX) have been investigated in preclinical models but the adaptive response in humans is not well defined. In an exploratory investigation, we examined how strength gains with resistance training relate to regulators of both muscle mass and oxidative function in middle-aged adults. Forty-one middle-aged adults [18 male (M), 23 female (F); 50 ± 7 yr; 27.8 ± 3.7 kg/m2; means ± SD] participated in a 10-wk resistance training intervention. Muscle biopsies and plasma were sampled at baseline and postintervention. High-resolution fluo-respirometry was performed on a subset of muscle tissue. Apelin signaling (plasma apelin, P = 0.002; Apln mRNA, P < 0.001; apelin receptor mRNA Aplnr, P = 0.001) increased with resistance training. Muscle Vdr mRNA (P = 0.007) and Smox mRNA (P = 0.027) were also upregulated after the intervention. Mitochondrial respiratory capacity increased (Vmax, oxidative phosphorylation, and uncoupled electron transport system, P < 0.050), yet there were no changes in ADP sensitivity (Km P = 0.579), hydrogen peroxide emission (P = 0.469), nor transcriptional signals for mitochondrial biogenesis (nuclear respiratory factor 2, Gapba P = 0.766) and mitofusion (mitochondrial dynamin-like GTPase, Opa1 P = 0.072). Muscular strength with resistance training positively correlated to Apln, Aplnr, Vdr, and Smox transcriptional adaptations, as well as mitochondrial respiratory capacity (unadjusted P < 0.050, r = 0.400-0.781). Further research is required to understand the interrelationships of these targets with aged muscle phenotype.NEW & NOTEWORTHY Although some therapeutic targets may ameliorate hypertrophic and oxidative dysfunction with muscle aging in preclinical models, their responsiveness in human muscle remains unclear. We demonstrated that resistance training concurrently upregulated therapeutic targets of muscle aging and mitochondrial respiratory capacity, which positively correlated to strength gains. Specifically, we are the first to demonstrate that apelin and spermine oxidase are upregulated with resistance training in humans. Our work corroborates preclinical observations, with future work required for clinical efficacy.


Subject(s)
Mitochondria , Muscle Strength , Resistance Training , Adult , Apelin , Apelin Receptors , Female , Humans , Male , Middle Aged , Mitochondria/metabolism , Muscle, Skeletal/physiology , RNA, Messenger
10.
Am J Physiol Cell Physiol ; 323(3): C763-C771, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35876284

ABSTRACT

Multinuclear muscle fibers are the most voluminous cells in skeletal muscle and the primary drivers of growth in response to loading. Outside the muscle fiber, however, is a diversity of mononuclear cell types that reside in the extracellular matrix (ECM). These muscle-resident cells are exercise-responsive and produce the scaffolding for successful myofibrillar growth. Without proper remodeling and maintenance of this ECM scaffolding, the ability to mount an appropriate response to resistance training in adult muscles is severely hindered. Complex cellular choreography takes place in muscles following a loading stimulus. These interactions have been recently revealed by single-cell explorations into muscle adaptation with loading. The intricate ballet of ECM remodeling involves collagen production from fibrogenic cells and ECM modifying signals initiated by satellite cells, immune cells, and the muscle fibers themselves. The acellular collagen-rich ECM is also a mechanical signal-transducer and rich repository of growth factors that may directly influence muscle fiber hypertrophy once liberated. Collectively, high levels of collagen expression, deposition, and turnover characterize a well-trained muscle phenotype. The purpose of this review is to highlight the most recent evidence for how the ECM and its cellular components affect loading-induced muscle hypertrophy. We also address how the muscle fiber may directly take part in ECM remodeling, and whether ECM dynamics are rate limiting for muscle fiber growth.


Subject(s)
Extracellular Matrix , Muscle Fibers, Skeletal , Collagen/metabolism , Extracellular Matrix/metabolism , Humans , Hypertrophy/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism
11.
J Physiol ; 599(18): 4287-4307, 2021 09.
Article in English | MEDLINE | ID: mdl-34320223

ABSTRACT

KEY POINTS: The ingestion of protein potentiates the stimulation of myofibrillar protein synthesis rates after an acute bout of resistance exercise. Protein supplementation (eating above the protein Recommended Dietary Allowance) during resistance training has been shown to maximize lean mass and strength gains in healthy young and older adults. Here, contractile, oxidative, and structural protein synthesis were assessed in skeletal muscle in response to a moderate or higher protein diet during the early adaptive phase of resistance training in middle-aged adults. The stimulation of myofibrillar, mitochondrial or collagen protein synthesis rates during 0-3 weeks of resistance training is not further enhanced by a higher protein diet. These results show that moderate protein diets are sufficient to support the skeletal muscle adaptive response during the early phase of a resistance training programme. ABSTRACT: Protein ingestion augments muscle protein synthesis (MPS) rates acutely after resistance exercise and can offset age-related loss in muscle mass. Skeletal muscle contains a variety of protein pools, such as myofibrillar (contractile), mitochondrial (substrate oxidation), and collagen (structural support) proteins, and the sensitivity to nutrition and exercise seems to be dependent on the major protein fraction studied. However, it is unknown how free-living conditions with high dietary protein density and habitual resistance exercise mediates muscle protein subfraction synthesis. Therefore, we investigated the effect of moderate (MOD: 1.06 ± 0.22 g kg-1  day-1 ) or high (HIGH: 1.55 ± 0.25 g kg-1  day-1 ) protein intake on daily MPS rates within the myofibrillar (MyoPS), mitochondrial (MitoPS) and collagen (CPS) protein fractions in middle-aged men and women (n = 20, 47 ± 1 years, BMI 28 ± 1 kg m-2 ) during the early phase (0-3 weeks) of a dietary counselling-controlled resistance training programme. Participants were loaded with deuterated water, followed by daily maintenance doses throughout the intervention. Muscle biopsies were collected at baseline and after weeks 1, 2 and 3. MyoPS in the HIGH condition remained constant (P = 1.000), but MOD decreased over time (P = 0.023). MitoPS decreased after 0-3 weeks when compared to 0-1 week (P = 0.010) with no effects of protein intake (P = 0.827). A similar decline with no difference between groups (P = 0.323) was also observed for CPS (P = 0.007). Our results demonstrated that additional protein intake above moderate amounts does not potentiate the stimulation of longer-term MPS responses during the early stage of resistance training adaptations in middle-aged adults.


Subject(s)
Resistance Training , Aged , Dietary Proteins , Exercise , Female , Humans , Male , Middle Aged , Muscle Proteins , Muscle, Skeletal
12.
Front Physiol ; 12: 660498, 2021.
Article in English | MEDLINE | ID: mdl-33935807

ABSTRACT

Vitamin D is an essential nutrient for the maintenance of skeletal muscle and bone health. The vitamin D receptor (VDR) is present in muscle, as is CYP27B1, the enzyme that hydroxylates 25(OH)D to its active form, 1,25(OH)D. Furthermore, mounting evidence suggests that vitamin D may play an important role during muscle damage and regeneration. Muscle damage is characterized by compromised muscle fiber architecture, disruption of contractile protein integrity, and mitochondrial dysfunction. Muscle regeneration is a complex process that involves restoration of mitochondrial function and activation of satellite cells (SC), the resident skeletal muscle stem cells. VDR expression is strongly upregulated following injury, particularly in central nuclei and SCs in animal models of muscle injury. Mechanistic studies provide some insight into the possible role of vitamin D activity in injured muscle. In vitro and in vivo rodent studies show that vitamin D mitigates reactive oxygen species (ROS) production, augments antioxidant capacity, and prevents oxidative stress, a common antagonist in muscle damage. Additionally, VDR knockdown results in decreased mitochondrial oxidative capacity and ATP production, suggesting that vitamin D is crucial for mitochondrial oxidative phosphorylation capacity; an important driver of muscle regeneration. Vitamin D regulation of mitochondrial health may also have implications for SC activity and self-renewal capacity, which could further affect muscle regeneration. However, the optimal timing, form and dose of vitamin D, as well as the mechanism by which vitamin D contributes to maintenance and restoration of muscle strength following injury, have not been determined. More research is needed to determine mechanistic action of 1,25(OH)D on mitochondria and SCs, as well as how this action manifests following muscle injury in vivo. Moreover, standardization in vitamin D sufficiency cut-points, time-course study of the efficacy of vitamin D administration, and comparison of multiple analogs of vitamin D are necessary to elucidate the potential of vitamin D as a significant contributor to muscle regeneration following injury. Here we will review the contribution of vitamin D to skeletal muscle regeneration following injury.

13.
J Appl Physiol (1985) ; 127(6): 1651-1659, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31622159

ABSTRACT

Carbohydrate (CHO) ingestion is an established strategy to improve endurance performance. Race fuels should not only sustain performance but also be readily digested and absorbed. Potatoes are a whole-food-based option that fulfills these criteria, yet their impact on performance remains unexamined. We investigated the effects of potato purée ingestion during prolonged cycling on subsequent performance vs. commercial CHO gel or a water-only condition. Twelve cyclists (70.7 ± 7.7 kg, 173 ± 8 cm, 31 ± 9 yr, 22 ± 5.1% body fat; means ± SD) with average peak oxygen consumption (V̇o2peak) of 60.7 ± 9.0 mL·kg-1·min-1 performed a 2-h cycling challenge (60-85% V̇o2peak) followed by a time trial (TT; 6 kJ/kg body mass) while consuming potato, gel, or water in a randomized-crossover design. The race fuels were administered with [U-13C6]glucose for an indirect estimate of gastric emptying rate. Blood samples were collected throughout the trials. Blood glucose concentrations were higher (P < 0.001) in potato and gel conditions compared with water condition. Blood lactate concentrations were higher (P = 0.001) after the TT completion in both CHO conditions compared with water condition. TT performance was improved (P = 0.032) in both potato (33.0 ± 4.5 min) and gel (33.0 ± 4.2 min) conditions compared with water condition (39.5 ± 7.9 min). Moreover, no difference was observed in TT performance between CHO conditions (P = 1.00). In conclusion, potato and gel ingestion equally sustained blood glucose concentrations and TT performance. Our results support the effective use of potatoes to support race performance for trained cyclists.NEW & NOTEWORTHY The ingestion of concentrated carbohydrate gels during prolonged exercise has been shown to promote carbohydrate availability and improve exercise performance. Our study aim was to expand and diversify race fueling menus for athletes by providing an evidence-based whole-food alternative to the routine ingestion of gels during training and competition. Our work shows that russet potato ingestion during prolonged cycling is as effective as carbohydrate gels to support exercise performance in trained athletes.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Dietary Carbohydrates/administration & dosage , Solanum tuberosum , Adult , Blood Glucose , Digestion , Female , Humans , Male , Physical Exertion , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...