Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
J Cell Biol ; 221(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35024764

ABSTRACT

The repertoire of extratranslational functions of components of the protein synthesis apparatus is expanding to include control of key cell signaling networks. However, very little is known about noncanonical functions of members of the protein synthesis machinery in regulating cellular mechanics. We demonstrate that the eukaryotic initiation factor 6 (eIF6) modulates cellular mechanobiology. eIF6-depleted endothelial cells, under basal conditions, exhibit unchanged nascent protein synthesis, polysome profiles, and cytoskeleton protein expression, with minimal effects on ribosomal biogenesis. In contrast, using traction force and atomic force microscopy, we show that loss of eIF6 leads to reduced stiffness and force generation accompanied by cytoskeletal and focal adhesion defects. Mechanistically, we show that eIF6 is required for the correct spatial mechanoactivation of ERK1/2 via stabilization of an eIF6-RACK1-ERK1/2-FAK mechanocomplex, which is necessary for force-induced remodeling. These results reveal an extratranslational function for eIF6 and a novel paradigm for how mechanotransduction, the cellular cytoskeleton, and protein translation constituents are linked.


Subject(s)
Endothelial Cells/metabolism , Mechanotransduction, Cellular , Peptide Initiation Factors/metabolism , Animals , Biomechanical Phenomena , Cattle , Cytoskeleton/metabolism , Focal Adhesions/metabolism , HEK293 Cells , Humans , MAP Kinase Signaling System , Mice , Protein Biosynthesis , Ribosomes/metabolism
3.
J R Soc Interface ; 18(184): 20210492, 2021 11.
Article in English | MEDLINE | ID: mdl-34784777

ABSTRACT

To protect the gill capillaries from high systolic pulse pressure, the fish heart contains a compliant non-contractile chamber called the bulbus arteriosus which is part of the outflow tract (OFT) which extends from the ventricle to the ventral aorta. Thermal acclimation alters the form and function of the fish atria and ventricle to ensure appropriate cardiac output at different temperatures, but its impact on the OFT is unknown. Here we used ex vivo pressure-volume curves to demonstrate remodelling of passive stiffness in the rainbow trout (Oncorhynchus mykiss) bulbus arteriosus following more than eight weeks of thermal acclimation to 5, 10 and 18°C. We then combined novel, non-biased Fourier transform infrared spectroscopy with classic histological staining to show that changes in compliance were achieved by changes in tissue collagen-to-elastin ratio. In situ gelatin zymography and SDS-PAGE zymography revealed that collagen remodelling was underpinned, at least in part, by changes in activity and abundance of collagen degrading matrix metalloproteinases. Collectively, we provide the first indication of bulbus arteriosus thermal remodelling in a fish and suggest this remodelling ensures optimal blood flow and blood pressure in the OFT during temperature change.


Subject(s)
Acclimatization , Oncorhynchus mykiss , Animals , Collagen , Connective Tissue , Heart
4.
Nature ; 578(7794): 290-295, 2020 02.
Article in English | MEDLINE | ID: mdl-32025034

ABSTRACT

Shear stress on arteries produced by blood flow is important for vascular development and homeostasis but can also initiate atherosclerosis1. Endothelial cells that line the vasculature use molecular mechanosensors to directly detect shear stress profiles that will ultimately lead to atheroprotective or atherogenic responses2. Plexins are key cell-surface receptors of the semaphorin family of cell-guidance signalling proteins and can regulate cellular patterning by modulating the cytoskeleton and focal adhesion structures3-5. However, a role for plexin proteins in mechanotransduction has not been examined. Here we show that plexin D1 (PLXND1) has a role in mechanosensation and mechanically induced disease pathogenesis. PLXND1 is required for the response of endothelial cells to shear stress in vitro and in vivo and regulates the site-specific distribution of atherosclerotic lesions. In endothelial cells, PLXND1 is a direct force sensor and forms a mechanocomplex with neuropilin-1 and VEGFR2 that is necessary and sufficient for conferring mechanosensitivity upstream of the junctional complex and integrins. PLXND1 achieves its binary functions as either a ligand or a force receptor by adopting two distinct molecular conformations. Our results establish a previously undescribed mechanosensor in endothelial cells that regulates cardiovascular pathophysiology, and provide a mechanism by which a single receptor can exhibit a binary biochemical nature.


Subject(s)
Endothelial Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mechanotransduction, Cellular , Membrane Glycoproteins/metabolism , Stress, Mechanical , Animals , Atherosclerosis/metabolism , Female , Integrins/metabolism , Mice , Neuropilin-1/metabolism , Pliability , Receptors, Cell Surface/metabolism , Semaphorins/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
5.
Sci Rep ; 8(1): 12993, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190595

ABSTRACT

Glacial retreat in recent decades has exposed unstable slopes and allowed deep water to extend beneath some of those slopes. Slope failure at the terminus of Tyndall Glacier on 17 October 2015 sent 180 million tons of rock into Taan Fiord, Alaska. The resulting tsunami reached elevations as high as 193 m, one of the highest tsunami runups ever documented worldwide. Precursory deformation began decades before failure, and the event left a distinct sedimentary record, showing that geologic evidence can help understand past occurrences of similar events, and might provide forewarning. The event was detected within hours through automated seismological techniques, which also estimated the mass and direction of the slide - all of which were later confirmed by remote sensing. Our field observations provide a benchmark for modeling landslide and tsunami hazards. Inverse and forward modeling can provide the framework of a detailed understanding of the geologic and hazards implications of similar events. Our results call attention to an indirect effect of climate change that is increasing the frequency and magnitude of natural hazards near glaciated mountains.

6.
Pflugers Arch ; 470(8): 1205-1219, 2018 08.
Article in English | MEDLINE | ID: mdl-29594338

ABSTRACT

Numerous pathologies lead to remodelling of the mammalian ventricle, often associated with fibrosis. Recent work in fish has shown that fibrotic remodelling of the ventricle is 'reversible', changing seasonally as temperature-induced changes in blood viscosity alter haemodynamic load on the heart. The atrial response to varying haemodynamic load is less understood in mammals and completely unexplored in non-mammalian vertebrates. To investigate atrial remodelling, rainbow trout were chronically cooled (from 10 ± 1 to 5 ± 1 °C) and chronically warmed (from 10 ± 1 to 18 ± 1 °C) for a minimum of 8 weeks. We assessed the functional effects on compliance using ex vivo heart preparations and atomic force microscopy nano-indentation and found chronic cold increased passive stiffness of the whole atrium and micromechanical stiffness of tissue sections. We then performed histological, biochemical and molecular assays to probe the mechanisms underlying functional remodelling of the atrial tissue. We found cooling resulted in collagen deposition which was associated with an upregulation of collagen-promoting genes, including the fish-specific collagen I alpha 3 chain, and a reduction in gelatinase activity of collagen-degrading matrix metalloproteinases (MMPs). Finally, we found that cooling reduced mRNA expression of cardiac growth factors and hypertrophic markers. Following long-term warming, there was an opposing response to that seen with cooling; however, these changes were more moderate. Our findings suggest that chronic cooling causes atrial dilation and increased myocardial stiffness in trout atria analogous to pathological states defined by changes in preload or afterload of the mammalian atria. The reversal of this phenotype following chronic warming is particularly interesting as it suggests that typically pathological features of mammalian atrial remodelling may oscillate seasonally in the fish, revealing a more dynamic and plastic atrial remodelling response.


Subject(s)
Collagen/metabolism , Oncorhynchus mykiss/metabolism , Acclimatization/physiology , Animals , Cold Temperature , Female , Heart Atria/metabolism , Heart Ventricles/metabolism , Matrix Metalloproteinases/metabolism , Myocardium/metabolism , Temperature
7.
J Exp Biol ; 220(Pt 2): 147-160, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27852752

ABSTRACT

Thermal acclimation causes the heart of some fish species to undergo significant remodelling. This includes changes in electrical activity, energy utilization and structural properties at the gross and molecular level of organization. The purpose of this Review is to summarize the current state of knowledge of temperature-induced structural remodelling in the fish ventricle across different levels of biological organization, and to examine how such changes result in the modification of the functional properties of the heart. The structural remodelling response is thought to be responsible for changes in cardiac stiffness, the Ca2+ sensitivity of force generation and the rate of force generation by the heart. Such changes to both active and passive properties help to compensate for the loss of cardiac function caused by a decrease in physiological temperature. Hence, temperature-induced cardiac remodelling is common in fish that remain active following seasonal decreases in temperature. This Review is organized around the ventricular phases of the cardiac cycle - specifically diastolic filling, isovolumic pressure generation and ejection - so that the consequences of remodelling can be fully described. We also compare the thermal acclimation-associated modifications of the fish ventricle with those seen in the mammalian ventricle in response to cardiac pathologies and exercise. Finally, we consider how the plasticity of the fish heart may be relevant to survival in a climate change context, where seasonal temperature changes could become more extreme and variable.


Subject(s)
Acclimatization , Climate Change , Fishes/physiology , Heart/physiology , Temperature , Ventricular Remodeling , Animals
8.
Am J Physiol Regul Integr Comp Physiol ; 311(1): R133-43, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27101300

ABSTRACT

Low temperature directly alters cardiovascular physiology in freshwater turtles, causing bradycardia, arterial hypotension, and a reduction in systemic blood pressure. At the same time, blood viscosity and systemic resistance increase, as does sensitivity to cardiac preload (e.g., via the Frank-Starling response). However, the long-term effects of these seasonal responses on the cardiovascular system are unclear. We acclimated red-eared slider turtles to a control temperature (25°C) or to chronic cold (5°C). To differentiate the direct effects of temperature from a cold-induced remodeling response, all measurements were conducted at the control temperature (25°C). In anesthetized turtles, cold acclimation reduced systemic resistance by 1.8-fold and increased systemic blood flow by 1.4-fold, resulting in a 2.3-fold higher right to left (R-L; net systemic) cardiac shunt flow and a 1.8-fold greater shunt fraction. Following a volume load by bolus injection of saline (calculated to increase stroke volume by 5-fold, ∼2.2% of total blood volume), systemic resistance was reduced while pulmonary blood flow and systemic pressure increased. An increased systemic blood flow meant the R-L cardiac shunt was further pronounced. In the isolated ventricle, passive stiffness was increased following cold acclimation with 4.2-fold greater collagen deposition in the myocardium. Histological sections of the major outflow arteries revealed a 1.4-fold higher elastin content in cold-acclimated animals. These results suggest that cold acclimation alters cardiac shunting patterns with an increased R-L shunt flow, achieved through reducing systemic resistance and increasing systemic blood flow. Furthermore, our data suggests that cold-induced cardiac remodeling may reduce the stress of high cardiac preload by increasing compliance of the vasculature and decreasing compliance of the ventricle. Together, these responses could compensate for reduced systolic function at low temperatures in the slider turtle.


Subject(s)
Acclimatization/physiology , Cardiovascular Physiological Phenomena , Connective Tissue/physiology , Hot Temperature , Turtles/physiology , Animals , Blood Pressure/physiology , Cold Temperature , Collagen/metabolism , Compliance , Elastin/metabolism , Female , Male , Regional Blood Flow/physiology , Stroke Volume/physiology , Vascular Resistance/physiology , Vascular Stiffness/physiology
9.
Front Physiol ; 6: 427, 2015.
Article in English | MEDLINE | ID: mdl-26834645

ABSTRACT

Chronic pressure or volume overload can cause the vertebrate heart to remodel. The hearts of fish remodel in response to seasonal temperature change. Here we focus on the passive properties of the fish heart. Building upon our previous work on thermal-remodeling of the rainbow trout ventricle, we hypothesized that chronic cooling would initiate fibrotic cardiac remodeling, with increased myocardial stiffness, similar to that seen with pathological hypertrophy in mammals. We hypothesized that, in contrast to pathological hypertrophy in mammals, the remodeling response in fish would be plastic and the opposite response would occur following chronic warming. Rainbow trout held at 10°C (control group) were chronically (>8 weeks) exposed to cooling (5°C) or warming (18°C). Chronic cold induced hypertrophy in the highly trabeculated inner layer of the fish heart, with a 41% increase in myocyte bundle cross-sectional area, and an up-regulation of hypertrophic marker genes. Cold acclimation also increased collagen deposition by 1.7-fold and caused an up-regulation of collagen promoting genes. In contrast, chronic warming reduced myocyte bundle cross-sectional area, expression of hypertrophic markers and collagen deposition. Functionally, the cold-induced fibrosis and hypertrophy were associated with increased passive stiffness of the whole ventricle and with increased micromechanical stiffness of tissue sections. The opposite occurred with chronic warming. These findings suggest chronic cooling in the trout heart invokes a hypertrophic phenotype with increased cardiac stiffness and fibrosis that are associated with pathological hypertrophy in the mammalian heart. The loss of collagen and increased compliance following warming is particularly interesting as it suggests fibrosis may oscillate seasonally in the fish heart, revealing a more dynamic nature than the fibrosis associated with dysfunction in mammals.

10.
J Exp Biol ; 217(Pt 13): 2244-9, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-25141343

ABSTRACT

The relationship between tail (or wing) beat frequency (f(tail)), amplitude (A) and forward velocity (U) in animals using oscillatory propulsion, when moving at a constant cruising speed, converges upon an optimum range of the Strouhal number (St = f(tail) · A/U). Previous work, based on observational data and supported by theory, shows St falling within the broad optimum range (0.2

Subject(s)
Oncorhynchus mykiss/physiology , Swimming , Animals , Biomechanical Phenomena , Female , Temperature
11.
Nurse Educ Today ; 27(5): 382-8, 2007 Jul.
Article in English | MEDLINE | ID: mdl-16904796

ABSTRACT

This paper details the increasing pressure that exists on academic and clinical staff to publish in the context of personal and professional development. Numerous barriers to writing for publication are considered along with suggested strategies for encouraging staff to work towards publication. Although the paper identifies a wealth of literature describing how to go about writing for publication, it is argued that this is of limited use in the support of individual authors, and that most authors learn academic writing skills through a process of trial and error. The paper is intended to encourage those wanting to write for publication, whilst trying to persuade those with influence on developing academic writing to think more broadly in regards to the support provided and need for research.


Subject(s)
Nursing Research , Staff Development , Writing , Faculty, Nursing , Humans , Nursing Research/education , Nursing Research/organization & administration , Nursing Staff , Periodicals as Topic , Publishing , Social Support , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...