Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Int Soc Sports Nutr ; 16(1): 15, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30947727

ABSTRACT

BACKGROUND: Exercise and heat trigger dehydration and an increase in extracellular fluid osmolality, leading to deficits in exercise performance and thermoregulation. Evidence from previous studies supports the potential for deep-ocean mineral water to improve recovery of exercise performance post-exercise. We therefore wished to determine whether acute rehydration and muscle strength recovery was enhanced by deep-ocean mineral water following a dehydrating exercise, compared to a sports drink or mountain spring water. We hypothesized that muscle strength would decrease as a result of dehydrating exercise, and that recovery of muscle strength and hydration would depend on the type of rehydrating fluid. METHODS: Using a counterbalanced, crossover study design, female (n = 8) and male (n = 9) participants performed a dehydrating exercise protocol under heat stress until achieving 3% body mass loss. Participants rehydrated with either deep-ocean mineral water (Deep), mountain spring water (Spring), or a carbohydrate-based sports drink (Sports) at a volume equal to the volume of fluid loss. We measured relative hydration using salivary osmolality (Sosm) and muscle strength using peak torque from a leg extension maneuver. RESULTS: Sosm significantly increased (p < 0.0001) with loss of body mass during the dehydrating exercise protocol. Males took less time (90.0 ± 18.3 min; P < 0.0034) to reach 3% body mass loss when compared to females (127.1 ± 20.0 min). We used a mono-exponential model to fit the return of Sosm to baseline values during the rehydrating phase. Whether fitting stimulated or unstimulated Sosm, male and female participants receiving Deep as the hydrating fluid exhibited the most rapid return to baseline Sosm (p < 0.0001) regardless of the fit parameter. Males compared to females generated more peak torque (p = 0.0005) at baseline (308.3 ± 56.7 Nm vs 172.8 ± 40.8 Nm, respectively) and immediately following 3% body mass loss (276.3 ± 39.5 Nm vs 153.5 ± 35.9 Nm). Participants experienced a loss. We also identified a significant effect of rehydrating fluid and sex on post-rehydration peak torque (p < 0.0117). CONCLUSION: We conclude that deep-ocean mineral water positively affected hydration recovery after dehydrating exercise, and that it may also be beneficial for muscle strength recovery, although this, as well as the influence of sex, needs to be further examined by future research. TRIAL REGISTRATION: clincialtrials.gov PRS, NCT02486224 . Registered 08 June 2015.


Subject(s)
Dehydration , Drinking Water , Energy Drinks , Exercise , Fluid Therapy , Mineral Waters/therapeutic use , Adult , Athletic Performance , Body Temperature , Cross-Over Studies , Female , Heart Rate , Heat-Shock Response , Hot Temperature , Humans , Male , Osmolar Concentration , Water-Electrolyte Balance , Young Adult
2.
J Int Soc Sports Nutr ; 13: 17, 2016.
Article in English | MEDLINE | ID: mdl-27087798

ABSTRACT

BACKGROUND: Dehydration caused by prolonged exercise impairs thermoregulation, endurance and exercise performance. Evidence from animal and human studies validates the potential of desalinated deep-ocean mineral water to positively impact physiological and pathophysiological conditions. Here, we hypothesize that deep-ocean mineral water drawn from a depth of 915 m off the Kona, HI coast enhances recovery of hydration and exercise performance following a dehydrating exercise protocol compared to mountain spring water and a carbohydrate-based sports drink. FINDINGS: Subjects (n = 8) were exposed to an exercise-dehydration protocol (stationary biking) under warm conditions (30 °C) to achieve a body mass loss of 3 % (93.4 ± 21.7 total exercise time). During the post-exercise recovery period, subjects received deep-ocean mineral water (Kona), mountain spring water (Spring) or a carbohydrate-based sports drink (Sports) at a volume (in L) equivalent to body mass loss (in Kg). Salivary samples were collected at regular intervals during exercise and post-exercise rehydration. Additionally, each participant performed peak torque knee extension as a measure of lower body muscle performance. Subjects who received Kona during the rehydrating period showed a significantly more rapid return to pre-exercise (baseline) hydration state, measured as the rate of decline in peak to baseline salivary osmolality, compared to Sports and Spring groups. In addition, subjects demonstrated significantly improved recovery of lower body muscle performance following rehydration with Kona versus Sports or Spring groups. CONCLUSIONS: Deep-ocean mineral water shows promise as an optimal rehydrating source over spring water and/or sports drink.


Subject(s)
Athletes , Athletic Performance/physiology , Dehydration/physiopathology , Fluid Therapy/methods , Mineral Waters , Physical Endurance/physiology , Water-Electrolyte Balance/physiology , Carbonated Beverages , Drinking , Energy Drinks , Female , Humans , Male , Oceans and Seas
3.
J Neurophysiol ; 108(12): 3264-75, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23019009

ABSTRACT

Motor units within human muscles usually exhibit a significant degree of short-term synchronization. Such coincident spiking typically has been attributed to last-order projections that provide common synaptic input across motor neurons. The extent of branched input arising directly from cortical neurons has often been suggested as a critical factor determining the magnitude of short-term synchrony. The purpose of this study, therefore, was to quantify motor unit synchrony in a variety of human muscles differing in the presumed extent of cortical input to their respective motor nuclei. Cross-correlation histograms were generated from the firing times of 551 pairs of motor units in 16 human muscles. Motor unit synchrony tended to be weakest for proximal muscles and strongest for more distal muscles. Previous work in monkeys and humans has shown that the strength of cortical inputs to motor neurons also exhibits a similar proximal-to-distal gradient. However, in the present study, proximal-distal location was not an exclusive predictor of synchrony magnitude. The muscle that exhibited the least synchrony was an elbow flexor, whereas the greatest synchrony was most often found in intrinsic foot muscles. Furthermore, the strength of corticospinal inputs to the abductor hallucis muscle, an intrinsic foot muscle, as assessed through transcranial magnetic stimulation, was weaker than that projecting to the tibialis anterior muscle, even though the abductor hallucis muscle had higher synchrony values compared with the tibialis anterior muscle. We argue, therefore, that factors other than the potency of cortical inputs to motor neurons, such as the number of motor neurons innervating a muscle, significantly affects motor unit synchrony.


Subject(s)
Action Potentials/physiology , Motor Cortex/physiology , Motor Neurons/physiology , Muscle, Skeletal/physiology , Recruitment, Neurophysiological/physiology , Adult , Electromyography/methods , Female , Humans , Male , Middle Aged , Time Factors , Transcranial Magnetic Stimulation/methods
4.
J Physiol ; 571(Pt 3): 683-93, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16423860

ABSTRACT

Spinal motor neurones can exhibit sustained depolarization in the absence of maintained synaptic or injected current. This phenomenon, referred to as a plateau potential, is due to the activation of monoamine-dependent persistent inward currents. Accordingly, activation of a plateau potential should result in a decrease in the excitatory synaptic drive required to activate a motor unit. This, in turn, has been suggested to cause a progressive decline in the muscle force at which motor units are recruited during repeated voluntary contractions. Such a progressive decrease in threshold force associated with preceding activation of a plateau potential is referred to as 'warm up'. Furthermore, activation of a plateau potential is thought to manifest itself as a decrease in the derecruitment force compared to recruitment force. Multiple muscles, however, can contribute to the detected force and their relative contributions may vary over time, which could confound measures of recruitment and derecruitment force. Therefore, the purpose of this study was to compare the recruitment and derecruitment forces of single motor units in the human extensor digitorum and tibialis anterior during repetitive triangular-force contractions in which the contributions of other muscles had been minimized. In both muscles, we found that the recruitment thresholds of single motor units were unchanged during repeated contractions, and that the derecruitment force was consistently greater than the recruitment force. These results suggest either that plateau potentials were not engaged (or were rapidly extinguished) under these experimental conditions or that changes in recruitment and derecruitment force are not suitable criteria for detecting them.


Subject(s)
Motor Neurons/physiology , Muscle, Skeletal/physiology , Recruitment, Neurophysiological , Action Potentials , Adult , Female , Humans , Isometric Contraction , Male , Muscle, Skeletal/innervation
5.
J Neurophysiol ; 91(6): 2515-23, 2004 Jun.
Article in English | MEDLINE | ID: mdl-14724266

ABSTRACT

A peculiar aspect of the muscular organization of the human hand is that the main flexors and extensors of the fingers are muscles that each give rise to four parallel tendons that insert on all the fingers. It has been hypothesized that these multi-tendoned muscles are comprised of functional compartments, with each finger controlled by a discrete population of motor units. The purpose of this study was to determine the force distribution across the four fingers for motor units in human extensor digitorum (ED), a multi-tendoned muscle that extends the fingers. The force distribution was assessed by spike-triggered averaging and intraneural microstimulation for 233 and 18 ED units, respectively. A selectivity index from 0 (force equally distributed across the fingers) to 1.0 (force concentrated on a single finger) was used to quantify the distribution of motor unit force across the four digits. The mean selectivity index was high for ED motor units assessed with intraneural microstimulation (0.90 +/- 0.28) and was significantly greater than that obtained with spike-triggered averaging (0.38 +/- 0.14). Therefore it is likely that each finger is acted on by ED through a discrete population of motor units and that weak synchrony between motor units in different compartments of ED may have contributed to the appearance of spike-triggered average force on multiple fingers. Moreover, the high selectivity of motor units for individual fingers may provide the mechanical substrate needed for highly fractionated movements of the human hand.


Subject(s)
Action Potentials/physiology , Fingers/physiology , Muscle, Skeletal/physiology , Wrist/physiology , Adult , Analysis of Variance , Electric Stimulation/methods , Female , Humans , Male , Microelectrodes , Muscle Contraction/physiology , Neurons/physiology
6.
J Neurophysiol ; 91(1): 57-62, 2004 Jan.
Article in English | MEDLINE | ID: mdl-12968013

ABSTRACT

Short-term synchronization of active motor units has been attributed in part to last-order divergent projections that provide common synaptic input across motor neurons. The extent of synchrony thus allows insight as to how the inputs to motor neurons are distributed. Our particular interest relates to the organization of extrinsic finger muscles that give rise distally to multiple tendons, which insert onto all the fingers. For example, extensor digitorum (ED) is a multi-compartment muscle that extends digits 2-5. Given the unique architecture of ED, it is unclear if synaptic inputs are broadly distributed across the entire pool of motor neurons innervating ED or segregated to supply subsets of motor neurons innervating different compartments. Therefore the purpose of this study was to evaluate the degree of motor-unit synchrony both within and across compartments of ED. One hundred and forty-five different motor-unit pairs were recorded in the human ED of nine subjects during weak voluntary contractions. Cross-correlation histograms were generated for all of the motor-unit pairs and the degree of synchronization between two units was assessed using the index of common input strength (CIS). The degree of synchrony for motor-unit pairs within the same compartment (CIS = 0.7 +/- 0.3; mean +/- SD) was significantly greater than for motor-unit pairs in different compartments (CIS = 0.4 +/- 0.22). Consequently, last-order synaptic projections are not distributed uniformly across the entire pool of motor neurons innervating ED but are segregated to supply subsets of motor neurons innervating different compartments.


Subject(s)
Motor Neurons/physiology , Muscle, Skeletal/innervation , Tendons/innervation , Action Potentials/physiology , Adult , Electric Stimulation , Electromyography/methods , Electrophysiology , Female , Fingers , Humans , Isometric Contraction/physiology , Male , Muscle Contraction , Muscle, Skeletal/physiology , Tendons/physiology
7.
Muscle Nerve ; 28(5): 614-22, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14571465

ABSTRACT

The human extensor digitorum (ED) muscle gives rise distally to multiple tendons that insert onto and extend digits 2-5. It has been shown previously that the spike-triggered average forces of motor units in ED are broadly distributed across many tendons. Such force dispersion may result from linkages between the distal tendons of ED and may limit the ability to move the fingers independently. The purpose of this study, therefore, was to determine the extent to which the connections between tendons of ED distribute force across the fingers. Stimulation of ED muscle fibers was performed at 107 different sites in four subjects. The isometric force exerted on digits 2-5 resulting from the stimulation was measured separately. Stimulus-triggered averaging of each of the four force channels yielded the force contribution to each of the digits due to the stimulation at each site. A selectivity index from 0 (a site that distributes force equally across the fingers) to 1.0 (a site that produces force on a single finger) was computed to describe the distribution of force across the four fingers. The selectivity index resulting from electrical stimulation of ED averaged 0.70 +/- 0.21. These selectivity index values were significantly greater (P < 0.001) than those obtained for single motor units using spike-triggered averaging. These findings suggest that linkages between the distal tendons of ED probably play only a minor role in distributing force across the fingers and, therefore, other factors must be primarily responsible for the inability to move the fingers independently.


Subject(s)
Fingers/physiology , Muscle, Skeletal/physiology , Tendons/physiology , Adult , Analysis of Variance , Electric Stimulation/methods , Female , Humans , Male
8.
J Physiol ; 549(Pt 3): 865-75, 2003 Jun 15.
Article in English | MEDLINE | ID: mdl-12717007

ABSTRACT

Motor unit discharge rates decline by about 50 % over 60 s of a sustained maximum voluntary contraction (MVC). It has been suggested that this decline in discharge rate serves to maintain force by protecting against conduction failure and by optimizing the input to motor units as their contractile properties change. This hypothesis, known as muscle wisdom, is based in part on studies in which muscle force was shown to decline more rapidly when stimulation was maintained at a high rate than when stimulus rate was reduced over time. The stimulus rates used in those studies, however, were higher than those normally encountered during MVCs. The purpose of this study was to compare force loss under constant and declining stimulus rate conditions using rates similar to those that occur during voluntary effort. Isometric force and surface EMG signals were recorded from human adductor pollicis muscles in response to supramaximal stimuli delivered to the ulnar nerve at the elbow. Three fatigue protocols, each 60 s in duration, were carried out on separate days on each of 10 subjects: (1) continuous stimulation at 30 Hz, (2) stimulation at progressively decreasing rates from 30 to 15 Hz and (3) sustained MVC. The relative force-time integral (endurance index) was significantly smaller for the sustained MVC (0.75 +/- 0.08) and decreasing stimulus rate conditions (0.76 +/- 0.16) compared to the condition in which stimulus rate was maintained at 30 Hz (0.90 +/- 0.13). These findings suggest that decreases in discharge rate may contribute to force decline during a sustained MVC.


Subject(s)
Motor Neurons/physiology , Muscle, Skeletal/physiology , Adult , Electric Stimulation , Electromyography , Female , Humans , Male , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/cytology , Muscle, Skeletal/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...