Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(6-2): 065201, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39020911

ABSTRACT

Shock-driven implosions with 100% deuterium (D_{2}) gas fill compared to implosions with 50:50 nitrogen-deuterium (N_{2}D_{2}) gas fill have been performed at the OMEGA laser facility to test the impact of the added mid-Z fill gas on implosion performance. Ion temperature (T_{ion}) as inferred from the width of measured DD-neutron spectra is seen to be 34%±6% higher for the N_{2}D_{2} implosions than for the D_{2}-only case, while the DD-neutron yield from the D_{2}-only implosion is 7.2±0.5 times higher than from the N_{2}D_{2} gas fill. The T_{ion} enhancement for N_{2}D_{2} is observed in spite of the higher Z, which might be expected to lead to higher radiative loss, and higher shock strength for the D_{2}-only versus N_{2}D_{2} implosions due to lower mass, and is understood in terms of increased shock heating of N compared to D, heat transfer from N to D prior to burn, and limited amount of ion-electron-equilibration-mediated additional radiative loss due to the added higher-Z material. This picture is supported by interspecies equilibration timescales for these implosions, constrained by experimental observables. The one-dimensional (1D) kinetic Vlasov-Fokker-Planck code ifp and the radiation hydrodynamic simulation codes hyades (1D) and xrage [1D, two-dimensional (2D)] are brought to bear to understand the observed yield ratio. Comparing measurements and simulations, the yield loss in the N_{2}D_{2} implosions relative to the pure D_{2}-fill implosion is determined to result from the reduced amount of D_{2} in the fill (fourfold effect on yield) combined with a lower fraction of the D_{2} fuel being hot enough to burn in the N_{2}D_{2} case. The experimental yield and T_{ion} ratio observations are relatively well matched by the kinetic simulations, which suggest interspecies diffusion is responsible for the lower fraction of hot D_{2} in the N_{2}D_{2} relative to the D_{2}-only case. The simulated absolute yields are higher than measured; a comparison of 1D versus 2D xrage simulations suggest that this can be explained by dimensional effects. The hydrodynamic simulations suggest that radiative losses primarily impact the implosion edges, with ion-electron equilibration times being too long in the implosion cores. The observations of increased T_{ion} and limited additional yield loss (on top of the fourfold expected from the difference in D content) for the N_{2}D_{2} versus D_{2}-only fill suggest it is feasible to develop the platform for studying CNO-cycle-relevant nuclear reactions in a plasma environment.

2.
Phys Rev E ; 108(3-2): 035201, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849093

ABSTRACT

The ion velocity distribution functions of thermonuclear plasmas generated by spherical laser direct drive implosions are studied using deuterium-tritium (DT) and deuterium-deuterium (DD) fusion neutron energy spectrum measurements. A hydrodynamic Maxwellian plasma model accurately describes measurements made from lower temperature (<10 keV), hydrodynamiclike plasmas, but is insufficient to describe measurements made from higher temperature more kineticlike plasmas. The high temperature measurements are more consistent with Vlasov-Fokker-Planck (VFP) simulation results which predict the presence of a bimodal plasma ion velocity distribution near peak neutron production. These measurements provide direct experimental evidence of non-Maxwellian ion velocity distributions in spherical shock driven implosions and provide useful data for benchmarking kinetic VFP simulations.

3.
Phys Rev Lett ; 130(14): 145101, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37084442

ABSTRACT

Collisional plasma shocks generated from supersonic flows are an important feature in many astrophysical and laboratory high-energy-density plasmas. Compared to single-ion-species plasma shocks, plasma shock fronts with multiple ion species contain additional structure, including interspecies ion separation driven by gradients in species concentration, temperature, pressure, and electric potential. We present time-resolved density and temperature measurements of two ion species in collisional plasma shocks produced by head-on merging of supersonic plasma jets, allowing determination of the ion diffusion coefficients. Our results provide the first experimental validation of the fundamental inter-ion-species transport theory. The temperature separation, a higher-order effect reported here, is valuable for advancements in modeling HED and ICF experiments.

4.
Phys Rev E ; 104(5-2): 055205, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942772

ABSTRACT

We report on simulations of strong, steady-state collisional planar plasma shocks with fully kinetic ions and electrons, independently confirmed by two fully kinetic codes (an Eulerian continuum and a Lagrangian particle-in-cell). While kinetic electrons do not fundamentally change the shock structure as compared with fluid electrons, we find an appreciable rearrangement of the preheat layer, associated with nonlocal electron heat transport effects. The electron heat-flux profile qualitatively agrees between kinetic- and fluid-electron models, suggesting a certain level of "stiffness," though substantial nonlocality is observed in the kinetic heat flux. We also find good agreement with nonlocal electron heat-flux closures proposed in the literature. Finally, in contrast to the classical hydrodynamic picture, we find a significant collapse in the "precursor" electric-field shock at the preheat layer leading edge, which correlates with the electron-temperature gradient relaxation.

5.
Phys Rev Lett ; 120(9): 095001, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29547332

ABSTRACT

The structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (M∼11) propagating through a low-density (ρ∼0.01 mg/cc) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...