Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 27(6): 603-11, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16865916

ABSTRACT

The fate of chloroform, which was chosen to represent chlorinated volatile organic compounds sometimes found in publicly owned wastewater treatment works, has been followed in a pilot aeration basin utilizing aeration recirculation. Tests were conducted using real wastewaters spiked with two different concentration levels of chloroform and operated at conditions similar to those of a large-scale aeration basin of the Mill Creek Wastewater Treatment Plant in Cincinnati, Ohio. Aeration recirculation levels of 0, 25, 50, and 75% were used to evaluate the concept that aeration recirculation can be an effective method of reducing the release of these toxic compounds to the atmosphere. Data obtained demonstrated that the concentration of chloroform in the off-gas increased as the recirculation ratio increased, but that the total mass emission rate to the atmosphere decreased due to the decreased off-gas volumetric flow rate. Biodegradation in the pilot plant increased by 183% for the 75% recirculation level compared to 0% recirculation. Mass balance analysis results indicated that 60% of chloroform emissions could be reduced with 75% recirculation ratio with little or no effect of dissolved oxygen concentration.


Subject(s)
Air , Bioreactors , Hydrocarbons, Chlorinated/analysis , Waste Disposal, Fluid/methods , Water Purification/methods , Air Movements , Biodegradation, Environmental , Chloroform/analysis , Ohio , Oxygen/chemistry , Oxygen/metabolism , Volatilization
2.
Water Sci Technol ; 49(8): 73-9, 2004.
Article in English | MEDLINE | ID: mdl-15193097

ABSTRACT

Environmental engineering education has rapidly expanded in recent years and new teaching methods are needed. Many professionals and educators believe that a MS degree in environmental engineering should be the minimum in order to practice the profession, along with practical training. This paper describes an innovative program being offered at the University of Cincinnati that combines an integrated BS in civil engineering and an MS in environmental engineering with extensive practical co-operative education (co-op) experience, all within a five-year period. The program includes distance learning opportunities during the co-op periods. The result is a well-trained graduate who will receive higher pay and more challenging career opportunities, and who will have developed professionalism and maturity beyond that from traditional engineering programs.


Subject(s)
Cooperative Behavior , Curriculum , Ecology/education , Education, Professional , Engineering/education , Environmental Pollution/prevention & control , Humans , Ohio , Problem-Based Learning , Program Development , Seasons , Universities , Work
3.
Environ Sci Technol ; 35(15): 3219-24, 2001 Aug 01.
Article in English | MEDLINE | ID: mdl-11506008

ABSTRACT

The combined removal of sulfur dioxide (SO2, up to 3,000 ppm) and nitrogen oxides (NO and NO2, up to 1,200 ppm) has been investigated in a bench-scale pulsed-corona enhanced wet electrostatic precipitator (wESP) with the optional injection of ammonia and/or ozone. The reaction of ammonia with SO2 produces submicron aerosols under certain conditions. Experiments have shown the feasibility of combined SO2 and NOx removal from simulated flue gases by the action of these in-situ generated aerosols. The mechanisms for NOx removal include oxidation of NO to NO2 and subsequent absorption of NO2 into the water wall of the wESP. The results have shown that injecting NH3 (NH3/NOx molar ratio 1) resulted in NOx removal of approximately 13% in a simulated combustion flue gas. Injecting 200 ppm ozone (no ammonia) increased NO conversion to 35% by oxidation, but total NOx removal increased to only 17%. Without the formation of ammonium salts aerosols (e.g., without SO2 in the gas), co-injection of ammonia and ozone increased NO conversion to 60% and NOx removal to 40%. However, high NOx removals were measured in simulated flue gas that contained NH3, SO2, and ozone. The total NOx removal efficiency was 79% when the ammonium salts aerosols were formed in the presence of 2400 ppm SO2, 312 ppm O3, and 2,900 ppm NH3. The energy efficiency of collection improved by approximately 250% for SO2 removal and more than 4700% for NOx removal under these conditions. It was determined that the ammonium salts aerosols produced from the reaction of ammonia and sulfur dioxide substantially enhanced total NOx removal.


Subject(s)
Air Pollution/prevention & control , Nitric Oxide/chemistry , Nitrogen Dioxide/chemistry , Quaternary Ammonium Compounds/chemistry , Sulfur Dioxide/chemistry , Absorption , Aerosols/chemistry , Electrochemistry , Gases , Nitric Oxide/analysis , Nitrogen Dioxide/analysis , Oxidants, Photochemical/chemistry , Ozone/chemistry , Power Plants , Sulfur Dioxide/analysis
4.
Water Sci Technol ; 44(1): 161-6, 2001.
Article in English | MEDLINE | ID: mdl-11496668

ABSTRACT

Anaerobic sludge digestion is a widely adopted process for sludge stabilization. Phosphate removal from anaerobic supernatant is necessary to limit the phosphate returned to the head of the treatment plant, thereby improving the overall treatment efficiency. In this study, magnesium hydroxide (Mg(OH)2) was used to improve the sludge digestion efficiency and to remove phosphorus from anaerobic supernatant. The anaerobic sludge digestion experiment was conducted at a pilot scale, and the results showed that applying Mg(OH)2 to anaerobic sludge digester resulted in a larger reduction in SS and COD, a higher biogas production rate, a lower level of phosphate and ammonia nitrogen concentrations in the sludge supernatant and an improved sludge dewaterability. Research results at both lab scale and pilot scale on phosphorus removal from anaerobic supernatant using Mg(OH)2 showed that a high removal of phosphorus can be achieved through the addition of Mg(OH)2. The required reaction time depends on the initial phosphorus concentration and the Mg(OH)2 dosage.


Subject(s)
Magnesium Hydroxide/chemistry , Phosphorus/metabolism , Sewage/chemistry , Ammonia/analysis , Bacteria, Anaerobic/physiology , Oxygen , Phosphates/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...