Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Water Health ; 22(1): 123-137, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38295076

ABSTRACT

The rapid increases in industrialization and populations are significant sources of water contamination. The speed with which contamination of groundwater and surface water occurs is becoming a serious problem and poses a significant obstacle for water stakeholders. Heavy metals, organic, and inorganic contaminants in the form of suspended and dissolved materials are just a few of the contaminants that can be found in drinking water. One of the most common contaminants in the water is fluoride, which is responsible for numerous toxic diseases. Different traditional techniques, for example, coagulation, ion exchange, absorption, and membrane filtration are being used to dispose of fluoride from water. However, nanomaterials such as magnetic nanoparticles (NPs) are very efficient, reliable, cost-effective, and stable materials to replace traditional water treatment techniques. There has been an increase in interest in the application of nanomaterials to the purification of drinking water over the past few decades. The use of magnetic NPs, such as metal and metal oxide NPs, to remove fluoride ions and organic matter from water is highlighted in this review article. Also, this section also discusses the properties, benefits and drawbacks, and difficulties of utilizing magnetic NPs in the process of purifying drinking water.


Subject(s)
Drinking Water , Nanostructures , Water Pollutants, Chemical , Water Purification , Fluorides , Water Pollutants, Chemical/analysis , Water Purification/methods , Magnetic Phenomena , Adsorption
2.
Mol Biotechnol ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37914863

ABSTRACT

Bacterial pathogens in water, food, and the environment are spreading diseases around the world. According to a World Health Organization (WHO) report, waterborne pathogens pose the most significant global health risks to living organisms, including humans and animals. Conventional bacterial detection approaches such as colony counting, microscopic analysis, biochemical analysis, and molecular analysis are expensive, time-consuming, less sensitive, and require a pre-enrichment step. However, the bacteriophage-based detection of pathogenic bacteria is a robust approach that utilizes bacteriophages, which are viruses that specifically target and infect bacteria, for rapid and accurate detection of targets. This review shed light on cutting-edge technologies about the novel structure of phages and the immobilization process on the surface of electrodes to detect targeted bacterial cells. Similarly, the purpose of this study was to provide a comprehensive assessment of bacteriophage-based biosensors utilized for pathogen detection, as well as their trends, outcomes, and problems. This review article summaries current phage-based pathogen detection strategies for the development of low-cost lab-on-chip (LOC) and point-of-care (POC) devices using electrochemical and optical methods such as surface-enhanced Raman spectroscopy (SERS).

3.
Water Sci Technol ; 86(6): 1308-1324, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36178808

ABSTRACT

The Denitrification-Decomposition (DNDC)-Rice is a mechanistic model which is widely used for the simulation and estimation of greenhouse gas emissions [nitrous oxide (N2O)] from soils under rice cultivation. N2O emissions from paddy fields in South Korea are of high importance for their cumulative effect on climate. The objective of this study was to estimate the N2O emissions and biogeochemical factors involved in N2O emissions such as ammonium (NH4+) and nitrate (NO3-) using the DNDC model in the rice-growing regions of South Korea. N2O emission was observed at every application of fertilizer and during end-season drainage at different rice-growing regions in South Korea. Maximum NH4+ and NO3- were observed at 0-10 cm depth of soil. NH4+ increased at each fertilizer application and no change in NO3- was observed during flooding. NH4+ decreased and NO3- increased simultaneously at end-season drainage. Minimum and maximum cumulative N2O emissions were observed at Chungcheongbuk-do and Jeju-do regions of South Korea, respectively. The simulated average cumulative N2O emission in rice paddies of South Korea was 1.37 kg N2O-N ha-1 season-1. This study will help in calculating the total nitrogen emissions from agriculture land of South Korea and the World.


Subject(s)
Ammonium Compounds , Greenhouse Gases , Oryza , Agriculture , China , Fertilizers/analysis , Nitrates , Nitrogen/analysis , Nitrous Oxide/analysis , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...