Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 146: 108166, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35643022

ABSTRACT

Venous thromboembolism is one of the major disorders, which is significantly increased the mortality and morbidity rate. Warfarin sodium (WFS) is the most extensively prescribed drug for the prevention of thromboembolic diseases however, it has a narrow therapeutic index. Recently, many methods for detecting and monitoring the level of WFS have been proposed. However, the electrochemical method has gained more interest than the other traditional method due to its ease of operation. This article describes the hydrothermal synthesis of nickel-doped cerium oxide (CeO2@Ni) nanospheres for the selective electrochemical determination of WFS. Various spectroscopic techniques have been used to analyze the chemical composition, and surface morphology of CeO2@Ni nanospheres. Further, the prepared CeO2@Ni nanospheres modified electrode demonstrated excellent electrocatalytic behavior for WFS detection, with an ultralow detection limit of 6.3 × 10-9 M, a linear range of 1.0 × 10-8 M to 1.51 × 10-4 M and 1.51 × 10-4 M to 9.51 × 10-4 M, and a higher sensitivity of 2.9986 µA µM-1 cm2. Therefore, we believe that the CeO2@Ni nanosphere electrocatalyst can serve as a potential electrode catalyst for the sensing of WFS in real-time applications.


Subject(s)
Cerium , Nanospheres , Cerium/chemistry , Electrochemical Techniques/methods , Electrodes , Nickel/chemistry , Warfarin
SELECTION OF CITATIONS
SEARCH DETAIL
...