Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Sensors (Basel) ; 24(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931494

ABSTRACT

Due to limitations in current motion tracking technologies and increasing interest in alternative sensors for motion tracking both inside and outside the MRI system, in this study we share our preliminary experience with three alternative sensors utilizing diverse technologies and interactions with tissue to monitor motion of the body surface, respiratory-related motion of major organs, and non-respiratory motion of deep-seated organs. These consist of (1) a Pilot-Tone RF transmitter combined with deep learning algorithms for tracking liver motion, (2) a single-channel ultrasound transducer with deep learning for monitoring bladder motion, and (3) a 3D Time-of-Flight camera for observing the motion of the anterior torso surface. Additionally, we demonstrate the capability of these sensors to simultaneously capture motion data outside the MRI environment, which is particularly relevant for procedures like radiation therapy, where motion status could be related to previously characterized cyclical anatomical data. Our findings indicate that the ultrasound sensor can track motion in deep-seated organs (bladder) as well as respiratory-related motion. The Time-of-Flight camera offers ease of interpretation and performs well in detecting surface motion (respiration). The Pilot-Tone demonstrates efficacy in tracking bulk respiratory motion and motion of major organs (liver). Simultaneous use of all three sensors could provide complementary motion information outside the MRI bore, providing potential value for motion tracking during position-sensitive treatments such as radiation therapy.


Subject(s)
Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Respiration , Liver/diagnostic imaging , Liver/physiology , Movement/physiology , Urinary Bladder/diagnostic imaging , Urinary Bladder/physiology , Algorithms , Deep Learning , Motion , Ultrasonography/methods
2.
Sci Data ; 11(1): 404, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643291

ABSTRACT

Magnetic resonance imaging (MRI) has experienced remarkable advancements in the integration of artificial intelligence (AI) for image acquisition and reconstruction. The availability of raw k-space data is crucial for training AI models in such tasks, but public MRI datasets are mostly restricted to DICOM images only. To address this limitation, the fastMRI initiative released brain and knee k-space datasets, which have since seen vigorous use. In May 2023, fastMRI was expanded to include biparametric (T2- and diffusion-weighted) prostate MRI data from a clinical population. Biparametric MRI plays a vital role in the diagnosis and management of prostate cancer. Advances in imaging methods, such as reconstructing under-sampled data from accelerated acquisitions, can improve cost-effectiveness and accessibility of prostate MRI. Raw k-space data, reconstructed images and slice, volume and exam level annotations for likelihood of prostate cancer are provided in this dataset for 47468 slices corresponding to 1560 volumes from 312 patients. This dataset facilitates AI and algorithm development for prostate image reconstruction, with the ultimate goal of enhancing prostate cancer diagnosis.


Subject(s)
Magnetic Resonance Imaging , Prostate , Prostatic Neoplasms , Humans , Male , Artificial Intelligence , Machine Learning , Magnetic Resonance Imaging/methods , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology
3.
J Magn Reson Imaging ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485244

ABSTRACT

BACKGROUND: Postacute Covid-19 patients commonly present with respiratory symptoms; however, a noninvasive imaging method for quantitative characterization of respiratory patterns is lacking. PURPOSE: To evaluate if quantitative characterization of respiratory pattern on free-breathing higher temporal resolution MRI stratifies patients by cardiopulmonary symptom burden. STUDY TYPE: Prospective analysis of retrospectively acquired data. SUBJECTS: A total of 37 postacute Covid-19 patients (25 male; median [interquartile range (IQR)] age: 58 [42-64] years; median [IQR] days from acute infection: 335 [186-449]). FIELD STRENGTH/SEQUENCE: 0.55 T/two-dimensional coronal true fast imaging with steady-state free precession (trueFISP) at higher temporal resolution. ASSESSMENT: Patients were stratified into three groups based on presence of no (N = 11), 1 (N = 14), or ≥2 (N = 14) cardiopulmonary symptoms, assessed using a standardized symptom inventory within 1 month of MRI. An automated lung postprocessing workflow segmented each lung in each trueFISP image (temporal resolution 0.2 seconds) and respiratory curves were generated. Quantitative parameters were derived including tidal lung area, rates of inspiration and expiration, lung area coefficient of variability (CV), and respiratory incoherence (departure from sinusoidal pattern) were. Pulmonary function tests were recorded if within 1 month of MRI. Qualitative assessment of respiratory pattern and lung opacity was performed by three independent readers with 6, 9, and 23 years of experience. STATISTICAL TESTS: Analysis of variance to assess differences in demographic, clinical, and quantitative MRI parameters among groups; univariable analysis and multinomial logistic regression modeling to determine features predictive of patient symptom status; Akaike information criterion to compare the quality of regression models; Cohen and Fleiss kappa (κ) to quantify inter-reader reliability. Two-sided 5% significance level was used. RESULTS: Tidal area and lung area CV were significantly higher in patients with two or more symptoms than in those with one or no symptoms (area: 15.4 cm2 vs. 12.9 cm2 vs. 12.8 cm2 ; CV: 0.072, 0.067, and 0.058). Respiratory incoherence was significantly higher in patients with two or more symptoms than in those with one or no symptoms (0.05 vs. 0.043 vs. 0.033). There were no significant differences in patient age (P = 0.19), sex (P = 0.88), lung opacity severity (P = 0.48), or pulmonary function tests (P = 0.35-0.97) among groups. Qualitative reader assessment did not distinguish between groups and showed slight inter-reader agreement (κ = 0.05-0.11). DATA CONCLUSION: Quantitative respiratory pattern measures derived from dynamic higher-temporal resolution MRI have potential to stratify patients by symptom burden in a postacute Covid-19 cohort. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 3.

4.
ArXiv ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38076512

ABSTRACT

Random matrix theory (RMT) combined with principal component analysis has resulted in a widely used MPPCA noise mapping and denoising algorithm, that utilizes the redundancy in multiple acquisitions and in local image patches. RMT-based denoising relies on the uncorrelated identically distributed noise. This assumption breaks down after regridding of non-Cartesian sampling. Here we propose a Universal Sampling Denoising (USD) pipeline to homogenize the noise level and decorrelate the noise in non-Cartesian sampled k-space data after resampling to a Cartesian grid. In this way, the RMT approaches become applicable to MRI of any non-Cartesian k-space sampling. We demonstrate the denoising pipeline on MRI data acquired using radial trajectories, including diffusion MRI of a numerical phantom and ex vivo mouse brains, as well as in vivo $T_2$ MRI of a healthy subject. The proposed pipeline robustly estimates noise level, performs noise removal, and corrects bias in parametric maps, such as diffusivity and kurtosis metrics, and $T_2$ relaxation time. USD stabilizes the variance, decorrelates the noise, and thereby enables the application of RMT-based denoising approaches to MR images reconstructed from any non-Cartesian data. In addition to MRI, USD may also apply to other medical imaging techniques involving non-Cartesian acquisition, such as PET, CT, and SPECT.

5.
Eur Radiol ; 33(10): 6844-6851, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37552261

ABSTRACT

OBJECTIVES: To determine the impact of fat on the apparent T1 value of the liver using water-only derived T1 mapping. METHODS: 3-T MRI included 2D Look-Locker T1 mapping and proton density fat fraction (PDFF) mapping. T1 values of the liver were compared among T1 maps obtained by in-phase (IP), opposed-phase (OP), and Dixon water sequences using paired t-test. The correlation between T1 values of the liver on each T1 map and PDFF was assessed using Spearman correlation coefficient. The absolute differences between T1 value of the liver on Dixon water images and that on IP or OP images were also correlated with PDFF. RESULTS: One hundred sixty-two patients (median age, 70 [range, 24-91] years, 90 men) were retrospectively evaluated. The T1 values of the liver on each T1 map were significantly different (p < 0.001). The T1 value of the liver on IP images was significantly negatively correlated with PDFF (r = - 0.438), while the T1 value of the liver on OP images was slightly positively correlated with PDFF (r = 0.164). The T1 value of the liver on Dixon water images was slightly negatively correlated with PDFF (r = - 0.171). The absolute differences between T1 value of the liver on Dixon water images and that on IP or OP images were significantly correlated with PDFF (r = 0.606, 0.722; p < 0.001). CONCLUSION: Fat correction for the apparent T1 value by water-only derived T1 maps will be helpful for accurately evaluating the T1 value of the liver. CLINICAL RELEVANCE STATEMENT: Fat-corrected T1 mapping of the liver with the water component only obtained from the 2D Dixon Look-Locker sequence could be useful for accurately evaluating the T1 value of the liver without the impact of fat in daily clinical practice. KEY POINTS: • The T1 values of the liver on the conventional T1 maps are significantly affected by the presence of fat. • The apparent T1 value of the liver on water-only derived T1 maps would be slightly impacted by the presence of fat. • Fat correction for the apparent T1 values is necessary for the accurate assessment of the T1 values of the liver.


Subject(s)
Fatty Liver , Water , Male , Humans , Aged , Retrospective Studies , Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Protons
6.
Magn Reson Med ; 90(4): 1465-1483, 2023 10.
Article in English | MEDLINE | ID: mdl-37288538

ABSTRACT

PURPOSE: To optimize the choice of the flip angles of magnetization-prepared gradient-echo sequences for improved accuracy, precision, and speed of 3D-T1ρ mapping. METHODS: We propose a new optimization approach for finding variable flip-angle values that improve magnetization-prepared gradient-echo sequences used for 3D-T1ρ mapping. This new approach can improve the accuracy and SNR, while reducing filtering effects. We demonstrate the concept in the three different versions of the magnetization-prepared gradient-echo sequences that are typically used for 3D-T1ρ mapping and evaluate their performance in model agarose phantoms (n = 4) and healthy volunteers (n = 5) for knee joint imaging. We also tested the optimization with sequence parameters targeting faster acquisitions. RESULTS: Our results show that optimized variable flip angle can improve the accuracy and the precision of the sequences, seen as a reduction of the mean of normalized absolute difference from about 5%-6% to 3%-4% in model phantoms and from 15%-16% to 11%-13% in the knee joint, and improving SNR from about 12-28 to 22-32 in agarose phantoms and about 7-14 to 13-17 in healthy volunteers. The optimization can also compensate for the loss in quality caused by making the sequence faster. This results in sequence configurations that acquire more data per unit of time with SNR and mean of normalized absolute difference measurements close to its slower versions. CONCLUSION: The optimization of the variable flip angle can be used to increase accuracy and precision, and to improve the speed of the typical imaging sequences used for quantitative 3D-T1ρ mapping of the knee joint.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Sepharose , Algorithms , Image Enhancement/methods , Phantoms, Imaging
7.
Invest Radiol ; 58(10): 720-729, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37222526

ABSTRACT

INTRODUCTION: Prostate cancer diffusion weighted imaging (DWI) MRI is typically performed at high-field strength (3.0 T) in order to overcome low signal-to-noise ratio (SNR). In this study, we demonstrate the feasibility of prostate DWI at low field enabled by random matrix theory (RMT)-based denoising, relying on the MP-PCA algorithm applied during image reconstruction from multiple coils. METHODS: Twenty-one volunteers and 2 prostate cancer patients were imaged with a 6-channel pelvic surface array coil and an 18-channel spine array on a prototype 0.55 T system created by ramping down a commercial magnetic resonance imaging system (1.5 T MAGNETOM Aera Siemens Healthcare) with 45 mT/m gradients and 200 T/m/s slew rate. Diffusion-weighted images were acquired with 4 non-collinear directions, for which b = 50 s/mm 2 was used with 8 averages and b = 1000 s/mm 2 with 40 averages; 2 extra b = 50 s/mm 2 were used as part of the dynamic field correction. Standard and RMT-based reconstructions were applied on DWI over different ranges of averages. Accuracy/precision was evaluated using the apparent diffusion coefficient (ADC), and image quality was evaluated over 5 separate reconstructions by 3 radiologists with a 5-point Likert scale. For the 2 patients, we compare image quality and lesion visibility of the RMT reconstruction versus the standard one on 0.55 T and on clinical 3.0 T. RESULTS: The RMT-based reconstruction in this study reduces the noise floor by a factor of 5.8, thereby alleviating the bias on prostate ADC. Moreover, the precision of the ADC in prostate tissue after RMT increases over a range of 30%-130%, with the increase in both signal-to-noise ratio and precision being more prominent for a low number of averages. Raters found that the images were consistently of moderate to good overall quality (3-4 on the Likert scale). Moreover, they determined that b = 1000 s/mm 2 images from a 1:55-minute scan with the RMT-based reconstruction were on par with the corresponding images from a 14:20-minute scan with standard reconstruction. Prostate cancer was visible on ADC and calculated b = 1500 images even with the abbreviated 1:55-minute scan reconstructed with RMT. CONCLUSIONS: Prostate imaging using DWI is feasible at low field and can be performed more rapidly with noninferior image quality compared with standard reconstruction.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/diagnostic imaging , Prostate/pathology , Feasibility Studies , Prostatic Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio , Reproducibility of Results
8.
ArXiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131871

ABSTRACT

The fastMRI brain and knee dataset has enabled significant advances in exploring reconstruction methods for improving speed and image quality for Magnetic Resonance Imaging (MRI) via novel, clinically relevant reconstruction approaches. In this study, we describe the April 2023 expansion of the fastMRI dataset to include biparametric prostate MRI data acquired on a clinical population. The dataset consists of raw k-space and reconstructed images for T2-weighted and diffusion-weighted sequences along with slice-level labels that indicate the presence and grade of prostate cancer. As has been the case with fastMRI, increasing accessibility to raw prostate MRI data will further facilitate research in MR image reconstruction and evaluation with the larger goal of improving the utility of MRI for prostate cancer detection and evaluation. The dataset is available at https://fastmri.med.nyu.edu.

9.
J Magn Reson Imaging ; 58(4): 1055-1064, 2023 10.
Article in English | MEDLINE | ID: mdl-36651358

ABSTRACT

BACKGROUND: Demand for prostate MRI is increasing, but scan times remain long even in abbreviated biparametric MRIs (bpMRI). Deep learning can be leveraged to accelerate T2-weighted imaging (T2WI). PURPOSE: To compare conventional bpMRIs (CL-bpMRI) with bpMRIs including a deep learning-accelerated T2WI (DL-bpMRI) in diagnosing prostate cancer. STUDY TYPE: Retrospective. POPULATION: Eighty consecutive men, mean age 66 years (47-84) with suspected prostate cancer or prostate cancer on active surveillance who had a prostate MRI from December 28, 2020 to April 28, 2021 were included. Follow-up included prostate biopsy or stability of prostate-specific antigen (PSA) for 1 year. FIELD STRENGTH AND SEQUENCES: A 3 T MRI. Conventional axial and coronal T2 turbo spin echo (CL-T2), 3-fold deep learning-accelerated axial and coronal T2-weighted sequence (DL-T2), diffusion weighted imaging (DWI) with b = 50 sec/mm2 , 1000 sec/mm2 , calculated b = 1500 sec/mm2 . ASSESSMENT: CL-bpMRI and DL-bpMRI including the same conventional diffusion-weighted imaging (DWI) were presented to three radiologists (blinded to acquisition method) and to a deep learning computer-assisted detection algorithm (DL-CAD). The readers evaluated image quality using a 4-point Likert scale (1 = nondiagnostic, 4 = excellent) and graded lesions using Prostate Imaging Reporting and Data System (PI-RADS) v2.1. DL-CAD identified and assigned lesions of PI-RADS 3 or greater. STATISTICAL TESTS: Quality metrics were compared using Wilcoxon signed rank test, and area under the receiver operating characteristic curve (AUC) were compared using Delong's test. SIGNIFICANCE: P = 0.05. RESULTS: Eighty men were included (age: 66 ± 9 years; 17/80 clinically significant prostate cancer). Overall image quality results by the three readers (CL-T2, DL-T2) are reader 1: 3.72 ± 0.53, 3.89 ± 0.39 (P = 0.99); reader 2: 3.33 ± 0.82, 3.31 ± 0.74 (P = 0.49); reader 3: 3.67 ± 0.63, 3.51 ± 0.62. In the patient-based analysis, the reader results of AUC are (CL-bpMRI, DL-bpMRI): reader 1: 0.77, 0.78 (P = 0.98), reader 2: 0.65, 0.66 (P = 0.99), reader 3: 0.57, 0.60 (P = 0.52). Diagnostic statistics from DL-CAD (CL-bpMRI, DL-bpMRI) are sensitivity (0.71, 0.71, P = 1.00), specificity (0.59, 0.44, P = 0.05), positive predictive value (0.23, 0.24, P = 0.25), negative predictive value (0.88, 0.88, P = 0.48). CONCLUSION: Deep learning-accelerated T2-weighted imaging may potentially be used to decrease acquisition time for bpMRI. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Subject(s)
Deep Learning , Prostatic Neoplasms , Male , Humans , Aged , Middle Aged , Magnetic Resonance Imaging/methods , Prostate/diagnostic imaging , Prostate/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Retrospective Studies
11.
Invest Radiol ; 58(1): 76-87, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36165841

ABSTRACT

ABSTRACT: Magnetic resonance imaging (MRI) provides essential information for diagnosing and treating musculoskeletal disorders. Although most musculoskeletal MRI examinations are performed at 1.5 and 3.0 T, modern low-field MRI systems offer new opportunities for affordable MRI worldwide. In 2021, a 0.55 T modern low-field, whole-body MRI system with an 80-cm-wide bore was introduced for clinical use in the United States and Europe. Compared with current higher-field-strength MRI systems, the 0.55 T MRI system has a lower total ownership cost, including purchase price, installation, and maintenance. Although signal-to-noise ratios scale with field strength, modern signal transmission and receiver chains improve signal yield compared with older low-field magnetic resonance scanner generations. Advanced radiofrequency coils permit short echo spacing and overall compacter echo trains than previously possible. Deep learning-based advanced image reconstruction algorithms provide substantial improvements in perceived signal-to-noise ratios, contrast, and spatial resolution. Musculoskeletal tissue contrast evolutions behave differently at 0.55 T, which requires careful consideration when designing pulse sequences. Similar to other field strengths, parallel imaging and simultaneous multislice acquisition techniques are vital for efficient musculoskeletal MRI acquisitions. Pliable receiver coils with a more cost-effective design offer a path to more affordable surface coils and improve image quality. Whereas fat suppression is inherently more challenging at lower field strengths, chemical shift selective fat suppression is reliable and homogeneous with modern low-field MRI technology. Dixon-based gradient echo pulse sequences provide efficient and reliable multicontrast options, including postcontrast MRI. Metal artifact reduction MRI benefits substantially from the lower field strength, including slice encoding for metal artifact correction for effective metal artifact reduction of high-susceptibility metallic implants. Wide-bore scanner designs offer exciting opportunities for interventional MRI. This review provides an overview of the economical aspects, signal and image quality considerations, technological components and coils, musculoskeletal tissue relaxation times, and image contrast of modern low-field MRI and discusses the mainstream and new applications, challenges, and opportunities of musculoskeletal MRI.


Subject(s)
Artifacts , Musculoskeletal System , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Signal-To-Noise Ratio , Musculoskeletal System/diagnostic imaging
12.
Eur J Radiol ; 156: 110515, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36099832

ABSTRACT

PURPOSE: To evaluate detection and characterization of groundglass and fibrosis-like opacities imaged by non-contrast 0.55 Tesla MRI, and versus clinically-acquired chest CT images, in a cohort of post-Covid patients. MATERIALS AND METHODS: 64 individuals (26 women, mean age 53 ± 14 years, range 19-85) with history of Covid-19 pneumonia were recruited through a survivorship registry, with 106 non-contrast low-field 0.55 T cardiopulmonary MRI exams acquired from 9/8/2020-9/28/2021. MRI exams were obtained at an average interval of 9.5 ± 4.5 months from initial symptom report (range 1-18 months). Of these, 20 participants with 22 MRI exams had corresponding clinically-acquired CT chest imaging obtained within 30 days of MRI (average interval 18 ± 9 days, range 0-30). MR and CT images were reviewed and scored by two thoracic radiologists, for presence and extent of lung opacity by quadrant, opacity distribution, and presence versus absence of fibrosis-like subpleural reticulation and subpleural lines. Scoring was performed for each of four lung quadrants: right upper and middle lobe, right lower lobe, left upper lobe and lingula, and left lower lobe. Agreement between readers and modalities was assessed with simple and linear weighted Cohen's kappa (k) coefficients. RESULTS: Inter-reader concordance on CT for opacity presence, opacity extent, opacity distribution, and presence of subpleural lines and reticulation was 99%, 78%, 97%, 99%, and 94% (k 0.96, 0.86, 0.94, 0.97, 0.89), respectively. Inter-reader concordance on MR, among all 106 exams, for opacity presence, opacity extent, opacity distribution, and presence of subpleural lines and reticulation was 85%, 48%, 70%, 86%, and 76% (k 0.57, 0.32, 0.46, 0.47, 0.37), respectively. Inter-modality agreement between CT and MRI for opacity presence, opacity extent, opacity distribution, and presence subpleural lines and reticulation was 86%, 52%, 79%, 93%, and 76% (k 0.43, 0.63, 0.65, 0.80, 0.52). CONCLUSION: Low-field 0.55 T non-contrast MRI demonstrates fair to moderate inter-reader concordance, and moderate to substantial inter-modality agreement with CT, for detection and characterization of groundglass and fibrosis-like opacities.


Subject(s)
COVID-19 , Humans , Female , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Fibrosis
13.
Invest Radiol ; 57(8): 517-526, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35239614

ABSTRACT

OBJECTIVES: Despite significant progress, artifact-free visualization of the bone and soft tissues around hip arthroplasty implants remains an unmet clinical need. New-generation low-field magnetic resonance imaging (MRI) systems now include slice encoding for metal artifact correction (SEMAC), which may result in smaller metallic artifacts and better image quality than standard-of-care 1.5 T MRI. This study aims to assess the feasibility of SEMAC on a new-generation 0.55 T system, optimize the pulse protocol parameters, and compare the results with those of a standard-of-care 1.5 T MRI. MATERIALS AND METHODS: Titanium (Ti) and cobalt-chromium total hip arthroplasty implants embedded in a tissue-mimicking American Society for Testing and Materials gel phantom were evaluated using turbo spin echo, view angle tilting (VAT), and combined VAT and SEMAC (VAT + SEMAC) pulse sequences. To refine an MRI protocol at 0.55 T, the type of metal artifact reduction techniques and the effect of various pulse sequence parameters on metal artifacts were assessed through qualitative ranking of the images by 3 expert readers while taking measured spatial resolution, signal-to-noise ratios, and acquisition times into consideration. Signal-to-noise ratio efficiency and artifact size of the optimized 0.55 T protocols were compared with the 1.5 T standard and compressed-sensing SEMAC sequences. RESULTS: Overall, the VAT + SEMAC sequence with at least 6 SEMAC encoding steps for Ti and 9 for cobalt-chromium implants was ranked higher than other sequences for metal reduction ( P < 0.05). Additional SEMAC encoding partitions did not result in further metal artifact reductions. Permitting minimal residual artifacts, low magnetic susceptibility Ti constructs may be sufficiently imaged with optimized turbo spin echo sequences obviating the need for SEMAC. In cross-platform comparison, 0.55 T acquisitions using the optimized protocols are associated with 45% to 64% smaller artifacts than 1.5 T VAT + SEMAC and VAT + compressed-sensing/SEMAC protocols at the expense of a 17% to 28% reduction in signal-to-noise ratio efficiency. B 1 -related artifacts are invariably smaller at 0.55 T than 1.5 T; however, artifacts related to B 0 distortion, although frequently smaller, may appear as signal pileups at 0.55 T. CONCLUSIONS: Our results suggest that new-generation low-field SEMAC MRI reduces metal artifacts around hip arthroplasty implants to better advantage than current 1.5 T MRI standard of care. While the appearance of B 0 -related artifacts changes, reduction in B 1 -related artifacts plays a major role in the overall benefit of 0.55 T.


Subject(s)
Arthroplasty, Replacement, Hip , Artifacts , Chromium , Cobalt , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Titanium
14.
Neuroinformatics ; 20(3): 651-664, 2022 07.
Article in English | MEDLINE | ID: mdl-34626333

ABSTRACT

Thalamic nuclei have been implicated in several neurological diseases. Thalamic nuclei parcellation from structural MRI is challenging due to poor intra-thalamic nuclear contrast while methods based on diffusion and functional MRI are affected by limited spatial resolution and image distortion. Existing multi-atlas based techniques are often computationally intensive and time-consuming. In this work, we propose a 3D convolutional neural network (CNN) based framework for thalamic nuclei parcellation using T1-weighted Magnetization Prepared Rapid Gradient Echo (MPRAGE) images. Transformation of images to an efficient representation has been proposed to improve the performance of subsequent classification tasks especially when working with limited labeled data. We investigate this by transforming the MPRAGE images to White-Matter-nulled MPRAGE (WMn-MPRAGE) contrast, previously shown to exhibit good intra-thalamic nuclear contrast, prior to the segmentation step. We trained two 3D segmentation frameworks using MPRAGE images (n = 35 subjects): (a) a native contrast segmentation (NCS) on MPRAGE images and (b) a synthesized contrast segmentation (SCS) where synthesized WMn-MPRAGE representation generated by a contrast synthesis CNN were used. Thalamic nuclei labels were generated using THOMAS, a multi-atlas segmentation technique proposed for WMn-MPRAGE images. The segmentation accuracy and clinical utility were evaluated on a healthy cohort (n = 12) and a cohort (n = 45) comprising of healthy subjects and patients with alcohol use disorder (AUD), respectively. Both the segmentation CNNs yielded comparable performances on most thalamic nuclei with Dice scores greater than 0.84 for larger nuclei and at least 0.7 for smaller nuclei. However, for some nuclei, the SCS CNN yielded significant improvements in Dice scores (medial geniculate nucleus, P = 0.003, centromedian nucleus, P = 0.01) and percent volume difference (ventral anterior, P = 0.001, ventral posterior lateral, P = 0.01) over NCS. In the AUD cohort, the SCS CNN demonstrated a significant atrophy in ventral lateral posterior nucleus in AUD patients compared to healthy age-matched controls (P = 0.01), agreeing with previous studies on thalamic atrophy in alcoholism, whereas the NCS CNN showed spurious atrophy of the ventral posterior lateral nucleus. CNN-based segmentation of thalamic nuclei provides a fast and automated technique for thalamic nuclei prediction in MPRAGE images. The transformation of images to an efficient representation, such as WMn-MPRAGE, can provide further improvements in segmentation performance.


Subject(s)
Magnetic Resonance Imaging , White Matter , Atrophy , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Thalamic Nuclei/diagnostic imaging
15.
J Magn Reson Imaging ; 55(1): 289-300, 2022 01.
Article in English | MEDLINE | ID: mdl-34254382

ABSTRACT

BACKGROUND: T2 mapping is of great interest in abdominal imaging but current methods are limited by low resolution, slice coverage, motion sensitivity, or lengthy acquisitions. PURPOSE: Develop a radial turbo spin-echo technique with refocusing variable flip angles (RADTSE-VFA) for high spatiotemporal T2 mapping and efficient slice coverage within a breath-hold and compare to the constant flip angle counterpart (RADTSE-CFA). STUDY TYPE: Prospective technical efficacy. SUBJECTS: Testing performed on agarose phantoms and 12 patients. Focal liver lesion classification tested on malignant (N = 24) and benign (N = 11) lesions. FIELD STRENGTH/SEQUENCE: 1.5 T/RADTSE-VFA, RADTSE-CFA. ASSESSMENT: A constrained objective function was used to optimize the refocusing flip angles. Phantom and/or in vivo data were used to assess relative contrast, T2 estimation, specific absorption rate (SAR), and focal liver lesion classification. STATISTICAL TESTS: t-Tests or Mann-Whitney Rank Sum tests were used. RESULTS: Phantom data did not show significant differences in mean relative contrast (P = 0.10) and T2 accuracy (P = 0.99) between RADTSE-VFA and RADTSE-CFA. Adding noise caused T2 overestimation predominantly for RADTSE-CFA and low T2 values. In vivo results did not show significant differences in mean spleen-to-liver (P = 0.62) and kidney-to-liver (P = 0.49) relative contrast between RADTSE-VFA and RADTSE-CFA. Mean T2 values were not significantly different between the two techniques for spleen (T2VFA  = 109.2 ± 12.3 msec; T2CFA  = 110.7 ± 11.1 msec; P = 0.78) and kidney-medulla (T2VFA  = 113.0 ± 8.7 msec; T2CFA  = 114.0 ± 8.6 msec; P = 0.79). Liver T2 was significantly higher for RADTSE-CFA (T2VFA  = 52.6 ± 6.6 msec; T2CFA  = 60.4 ± 8.0 msec) consistent with T2 overestimation in the phantom study. Focal liver lesion classification had comparable T2 distributions for RADTSE-VFA and RADTSE-CFA for malignancies (P = 1.0) and benign lesions (P = 0.39). RADTSE-VFA had significantly lower SAR than RADTSE-CFA increasing slice coverage by 1.5. DATA CONCLUSION: RADTSE-VFA provided noise-robust T2 estimation compared to the constant flip angle counterpart while generating T2-weighted images with comparable contrast. The VFA scheme minimized SAR improving slice efficiency for breath-hold imaging. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Subject(s)
Magnetic Resonance Imaging , Data Collection , Humans , Phantoms, Imaging , Prospective Studies
16.
J Magn Reson Imaging ; 56(1): 184-195, 2022 07.
Article in English | MEDLINE | ID: mdl-34877735

ABSTRACT

BACKGROUND: Early diagnosis and treatment of prostate cancer (PCa) can be curative; however, prostate-specific antigen is a suboptimal screening test for clinically significant PCa. While prostate magnetic resonance imaging (MRI) has demonstrated value for the diagnosis of PCa, the acquisition time is too long for a first-line screening modality. PURPOSE: To accelerate prostate MRI exams, utilizing a variational network (VN) for image reconstruction. STUDY TYPE: Retrospective. SUBJECTS: One hundred and thirteen subjects (train/val/test: 70/13/30) undergoing prostate MRI. FIELD STRENGTH/SEQUENCE: 3.0 T; a T2 turbo spin echo (TSE) T2-weighted image (T2WI) sequence in axial and coronal planes, and axial echo-planar diffusion-weighted imaging (DWI). ASSESSMENT: Four abdominal radiologists evaluated the image quality of VN reconstructions of retrospectively under-sampled biparametric MRIs (bp-MRI), and standard bp-MRI reconstructions for 20 test subjects (studies). The studies included axial and coronal T2WI, DWI B50 seconds/mm2 and B1000 seconds/mm (4-fold T2WI, 3-fold DWI), all of which were evaluated separately for image quality on a Likert scale (1: non-diagnostic to 5: excellent quality). In another 10 test subjects, three readers graded lesions on bp-MRI-which additionally included calculated B1500 seconds/mm2 , and apparent diffusion coefficient map-according to the Prostate Imaging Reporting and Data System (PI-RADS v2.1), for both VN and standard reconstructions. Accuracy of PI-RADS ≥3 for clinically significant cancer was computed. Projected scan time of the retrospectively under-sampled biparametric exam was also computed. STATISTICAL TESTS: One-sided Wilcoxon signed-rank test was used for comparison of image quality. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated for lesion detection and grading. Generalized estimating equation with cluster effect was used to compare differences between standard and VN bp-MRI. A P-value of <0.05 was considered statistically significant. RESULTS: Three of four readers rated no significant difference for overall quality between the standard and VN axial T2WI (Reader 1: 4.00 ± 0.56 (Standard), 3.90 ± 0.64 (VN) P = 0.33; Reader 2: 4.35 ± 0.74 (Standard), 3.80 ± 0.89 (VN) P = 0.003; Reader 3: 4.60 ± 0.50 (Standard), 4.55 ± 0.60 (VN) P = 0.39; Reader 4: 3.65 ± 0.99 (Standard), 3.60 ± 1.00 (VN) P = 0.38). All four readers rated no significant difference for overall quality between standard and VN DWI B1000 seconds/mm2 (Reader 1: 2.25 ± 0.62 (Standard), 2.45 ± 0.75 (VN) P = 0.96; Reader 2: 3.60 ± 0.92 (Standard), 3.55 ± 0.82 (VN) P = 0.40; Reader 3: 3.85 ± 0.72 (Standard), 3.55 ± 0.89 (VN) P = 0.07; Reader 4: 4.70 ± 0.76 (Standard); 4.60 ± 0.73 (VN) P = 0.17) and three of four readers rated no significant difference for overall quality between standard and VN DWI B50 seconds/mm2 (Reader 1: 3.20 ± 0.70 (Standard), 3.40 ± 0.75 (VN) P = 0.98; Reader 2: 2.85 ± 0.81 (Standard), 3.00 ± 0.79 (VN) P = 0.93; Reader 3: 4.45 ± 0.72 (Standard), 4.05 ± 0.69 (VN) P = 0.02; Reader 4: 4.50 ± 0.69 (Standard), 4.45 ± 0.76 (VN) P = 0.50). In the lesion evaluation study, there was no significant difference in the number of PI-RADS ≥3 lesions identified on standard vs. VN bp-MRI (P = 0.92, 0.59, 0.87) with similar sensitivity and specificity for clinically significant cancer. The average scan time of the standard clinical biparametric exam was 11.8 minutes, and this was projected to be 3.2 minutes for the accelerated exam. DATA CONCLUSION: Diagnostic accelerated biparametric prostate MRI exams can be performed using deep learning methods in <4 minutes, potentially enabling rapid screening prostate MRI. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 5.


Subject(s)
Deep Learning , Prostatic Neoplasms , Diffusion Magnetic Resonance Imaging/methods , Humans , Magnetic Resonance Imaging/methods , Male , Prostate/diagnostic imaging , Prostate/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Retrospective Studies
17.
Abdom Radiol (NY) ; 46(12): 5772-5780, 2021 12.
Article in English | MEDLINE | ID: mdl-34415411

ABSTRACT

PURPOSE: To develop a protocol for abdominal imaging on a prototype 0.55 T scanner and to benchmark the image quality against conventional 1.5 T exam. METHODS: In this prospective IRB-approved HIPAA-compliant study, 10 healthy volunteers were recruited and imaged. A commercial MRI system was modified to operate at 0.55 T (LF) with two different gradient performance levels. Each subject underwent non-contrast abdominal examinations on the 0.55 T scanner utilizing higher gradients (LF-High), lower adjusted gradients (LF-Adjusted), and a conventional 1.5 T scanner. The following pulse sequences were optimized: fat-saturated T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and Dixon T1-weighted imaging (T1WI). Three readers independently evaluated image quality in a blinded fashion on a 5-point Likert scale, with a score of 1 being non-diagnostic and 5 being excellent. An exact paired sample Wilcoxon signed-rank test was used to compare the image quality. RESULTS: Diagnostic image quality (overall image quality score ≥ 3) was achieved at LF in all subjects for T2WI, DWI, and T1WI with no more than one unit lower score than 1.5 T. The mean difference in overall image quality score was not significantly different between LF-High and LF-Adjusted for T2WI (95% CI - 0.44 to 0.44; p = 0.98), DWI (95% CI - 0.43 to 0.36; p = 0.92), and for T1 in- and out-of-phase imaging (95%C I - 0.36 to 0.27; p = 0.91) or T1 fat-sat (water only) images (95% CI - 0.24 to 0.18; p = 1.0). CONCLUSION: Diagnostic abdominal MRI can be performed on a prototype 0.55 T scanner, either with conventional or with reduced gradient performance, within an acquisition time of 10 min or less.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Abdomen/diagnostic imaging , Humans , Image Interpretation, Computer-Assisted , Prospective Studies
18.
Magn Reson Imaging ; 79: 28-37, 2021 06.
Article in English | MEDLINE | ID: mdl-33722634

ABSTRACT

PURPOSE: To develop a fast volumetric T1 mapping technique. MATERIALS AND METHODS: A stack-of-stars (SOS) Look Locker technique based on the acquisition of undersampled radial data (>30× relative to Nyquist) and an efficient multi-slab excitation scheme is presented. A principal-component based reconstruction is used to reconstruct T1 maps. Computer simulations were performed to determine the best choice of partitions per slab and degree of undersampling. The technique was validated in phantoms against reference T1 values measured with a 2D Cartesian inversion-recovery spin-echo technique. The SOS Look Locker technique was tested in brain (n = 4) and prostate (n = 5). Brain T1 mapping was carried out with and without kz acceleration and results between the two approaches were compared. Prostate T1 mapping was compared to standard techniques. A reproducibility study was conducted in brain and prostate. Statistical analyses were performed using linear regression and Bland Altman analysis. RESULTS: Phantom T1 values showed excellent correlations between SOS Look Locker and the inversion-recovery spin-echo reference (r2 = 0.9965; p < 0.0001) and between SOS Look Locker with slab-selective and non-slab selective inversion pulses (r2 = 0.9999; p < 0.0001). In vivo results showed that full brain T1 mapping (1 mm3) with kz acceleration is achieved in 4 min 21 s. Full prostate T1 mapping (0.9 × 0.9 × 4 mm3) is achieved in 2 min 43 s. T1 values for brain and prostate were in agreement with literature values. A reproducibility study showed coefficients of variation in the range of 0.18-0.2% (brain) and 0.15-0.18% (prostate). CONCLUSION: A rapid volumetric T1 mapping technique was developed. The technique enables high-resolution T1 mapping with adequate anatomical coverage in a clinically acceptable time.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Computer Simulation , Humans , Male , Phantoms, Imaging , Reproducibility of Results
19.
Phys Med Biol ; 66(4): 04NT03, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33333497

ABSTRACT

Subspace-constrained reconstruction methods restrict the relaxation signals (of size M) in the scene to a pre-determined subspace (of size K≪M) and allow multi-contrast imaging and parameter mapping from accelerated acquisitions. However, these constraints yield poor image quality at some imaging contrasts, which can impact the parameter mapping performance. Additional regularization such as the use of joint-sparse (JS) or locally-low-rank (LLR) constraints can help improve the recovery of these images but are not sufficient when operating at high acceleration rates. We propose a method, non-local rank 3D (NLR3D), that is built on block matching and transform domain low rank constraints to allow high quality recovery of subspace-coefficient images (SCI) and subsequent multi-contrast imaging and parameter mapping. The performance of NLR3D was evaluated using Monte-Carlo (MC) simulations and compared against the JS and LLR methods. In vivo T 2 mapping results are presented on brain and knee datasets. MC results demonstrate improved bias, variance, and MSE behavior in both the multi-contrast images and parameter maps when compared to the JS and LLR methods. In vivo brain and knee results at moderate and high acceleration rates demonstrate improved recovery of high SNR early TE images as well as parameter maps. No significant difference was found in the T2 values measured in ROIs between the NLR3D reconstructions and the reference images (Wilcoxon signed rank test). The proposed method, NLR3D, enables recovery of high-quality SCI and, consequently, the associated multi-contrast images and parameter maps.


Subject(s)
Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Brain/diagnostic imaging , Humans , Knee/diagnostic imaging , Monte Carlo Method , Sensitivity and Specificity
20.
Magn Reson Imaging ; 73: 152-162, 2020 11.
Article in English | MEDLINE | ID: mdl-32882339

ABSTRACT

A deep learning MR parameter mapping framework which combines accelerated radial data acquisition with a multi-scale residual network (MS-ResNet) for image reconstruction is proposed. The proposed supervised learning strategy uses input image patches from multi-contrast images with radial undersampling artifacts and target image patches from artifact-free multi-contrast images. Subspace filtering is used during pre-processing to denoise input patches. For each anatomy and relaxation parameter, an individual network is trained. in vivo T1 mapping results are obtained on brain and abdomen datasets and in vivo T2 mapping results are obtained on brain and knee datasets. Quantitative results for the T2 mapping of the knee show that MS-ResNet trained using either fully sampled or undersampled data outperforms conventional model-based compressed sensing methods. This is significant because obtaining fully sampled training data is not possible in many applications. in vivo brain and abdomen results for T1 mapping and in vivo brain results for T2 mapping demonstrate that MS-ResNet yields contrast-weighted images and parameter maps that are comparable to those achieved by model-based iterative methods while offering two orders of magnitude reduction in reconstruction times. The proposed approach enables recovery of high-quality contrast-weighted images and parameter maps from highly accelerated radial data acquisitions. The rapid image reconstructions enabled by the proposed approach makes it a good candidate for routine clinical use.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Artifacts , Brain/diagnostic imaging , Humans , Knee/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...